Sea anemone toxins affecting voltage-gated sodium channels--molecular and evolutionary features.

Toxicon

Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.

Published: December 2009

The venom of sea anemones is rich in low molecular weight proteinaceous neurotoxins that vary greatly in structure, site of action, and phyletic (insect, crustacean or vertebrate) preference. This toxic versatility likely contributes to the ability of these sessile animals to inhabit marine environments co-habited by a variety of mobile predators. Among these toxins, those that show prominent activity at voltage-gated sodium channels and are critical in predation and defense, have been extensively studied for more than three decades. These studies initially focused on the discovery of new toxins, determination of their covalent and folded structures, understanding of their mechanisms of action on different sodium channels, and identification of the primary sites of interaction of the toxins with their channel receptors. The channel binding site for Type I and the structurally unrelated Type III sea anemone toxins was identified as neurotoxin receptor site 3, a site previously shown to be targeted by scorpion alpha-toxins. The bioactive surfaces of toxin representatives from these two sea anemone types have been characterized by mutagenesis. These analyses pointed to heterogeneity of receptor site 3 at various sodium channels. A turning point in evolutionary studies of sea anemone toxins was the recent release of the genome sequence of Nematostella vectensis, which enabled analysis of the genomic organization of the corresponding genes. This analysis demonstrated that Type I toxins in Nematostella and other species are encoded by gene families and suggested that these genes developed by concerted evolution. The current review provides a brief historical description of the discovery and characterization of sea anemone toxins that affect voltage-gated sodium channels and delineates recent advances in the study of their structure-activity relationship and evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807626PMC
http://dx.doi.org/10.1016/j.toxicon.2009.02.028DOI Listing

Publication Analysis

Top Keywords

sea anemone
20
anemone toxins
16
sodium channels
16
voltage-gated sodium
12
toxins
8
receptor site
8
sea
6
sodium
5
site
5
toxins voltage-gated
4

Similar Publications

The clownfish - sea anemone system is a great example of symbiotic mutualism where host «toxicity» does not impact its symbiont partner, although the underlying protection mechanism remains unclear. The regulation of nematocyst discharge in cnidarians involves N-acetylated sugars like sialic acid, that bind chemoreceptors on the tentacles of sea anemones, leading to the release of stings. It has been suggested that clownfish could be deprived of sialic acid on their skin surface, sparing them from being stung and facilitating mutualism with sea anemones.

View Article and Find Full Text PDF

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Optimized laboratory conditions for research models are crucial for the success of scientific projects. This includes controlling the entire life cycle, having access to all developmental stages and maintaining stable physiological conditions. Reducing the life cycle of a research model can also enhance the access to biological material and speed up genetic tool development.

View Article and Find Full Text PDF

TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.

View Article and Find Full Text PDF

Oxylipin signalling is central in biology, mediating processes such as cellular homeostasis, inflammation and molecular signalling. It may also facilitate inter-partner communication in the cnidarian-dinoflagellate symbiosis, though this aspect remains understudied. In this study, four oxylipin receptors were characterised using immunohistochemistry and immunoblotting in the sea anemone Exaiptasia diaphana ('Aiptasia'): Prostaglandin E2 receptor 2 (EP2) and 4 (EP4), Transient Receptor Potential cation channel A1 (TRPA1) and Glutamate Receptor Ionotropic, Kainate 2 (GRIK2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!