Exposure to elevated levels of manganese has been shown to cause neuronal damage in the midbrain and the development of Parkinsonian symptoms. Activation of microglia and release of neurotoxic factors in particular free radicals are known to contribute to neurodegeneration. We have recently reported that manganese chloride (MnCl(2)) stimulates microglia to produce reactive oxygen species (ROS). The aim of this study is to determine the role of microglia in the MnCl(2)-induced degeneration of dopaminergic (DA) neurons that are particularly vulnerable to oxidative insult. MnCl(2) (10-300 microM; 7 days) was markedly more effective in damaging DA neurons in the rat mesencephalic neuron-glia cultures than the neuron-enriched (microglia-depleted) cultures. In addition, the microglia-enhanced MnCl(2) toxicity was found to be preferential to DA neurons. The microglial enhancement of DA neurotoxicity was further supported by the observation that replenishment of microglia to the neuron-enriched cultures significantly increased the susceptibility of DA neurons to the MnCl(2)-induced damage. Analysis of the temporal relationship between microglial activation and DA neurodegeneration revealed that MnCl(2)-stimulated microglial activation preceded DA neurodegeneration. Mechanistically, MnCl(2) (10-300 microM) stimulated a concentration- and time-dependent robust production of ROS and moderate production of nitric oxide but no detectable release of tumor necrosis factor-alpha and interleukin-1beta. Application of free radical scavengers including superoxide dismutase/catalase, glutathione, N-acetyl cysteine and an inhibitor of nitric oxide biosynthesis significantly protected DA neurons against the MnCl(2)-induced degeneration. These results demonstrate that microglial activation and the production of reactive nitrogen and oxygen free radicals promote the MnCl(2)-induced DA neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673144PMC
http://dx.doi.org/10.1016/j.expneurol.2009.02.013DOI Listing

Publication Analysis

Top Keywords

microglial activation
12
free radical
8
free radicals
8
mncl2-induced degeneration
8
mncl2 10-300
8
10-300 microm
8
neurons mncl2-induced
8
nitric oxide
8
microglia
5
neurodegeneration
5

Similar Publications

Tissue engineering research for neurological applications has demonstrated that biomaterial-based structural bridges present a promising approach for promoting regeneration. This is particularly relevant for penetrating traumatic brain injuries, where the clinical prognosis is typically poor, with no available regeneration-enhancing therapies. Specifically, repurposing clinically approved biomaterials offers many advantages (reduced approval time and achieving commercial scaleup for clinical applications), highlighting the need for detailed screening of potential neuromaterials.

View Article and Find Full Text PDF

Objective: Subarachnoid hemorrhage (SAH) and tumorigenesis share numerous biological complexities; nevertheless, the specific gene expression profiles and underlying mechanisms remain poorly understood. This study aims to identify differentially expressed genes (DEGs) that could serve as biomarkers for diagnosis and prognosis.

Methods: Gene expression datasets (GSE122063, GSE13353, GSE161870) were analyzed using machine learning algorithms and logistic regression to identify DEGs associated with both SAH and tumorigenesis.

View Article and Find Full Text PDF

Cathepsin B Modulates Alzheimer's Disease Pathology Through SAPK/JNK Signals Following Administration of Porphyromonas gingivalis-Derived Outer Membrane Vesicles.

J Clin Periodontol

December 2024

Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.

Aim: Porphyromonas gingivalis, a consensus periodontal pathogen, is thought to be involved in Alzheimer's disease (AD) progression, and P. gingivalis-derived outer membrane vesicles (PgOMVs) are a key toxic factor in inducing AD pathology. This study aimed to clarify the regulatory mechanism underlying the PgOMV-induced AD-like phenotype.

View Article and Find Full Text PDF

The microglial triggering receptor expressed on myeloid cells 2 (TREM2) is required for diverse microglia responses in neurodegeneration, including immunometabolic plasticity, phagocytosis, and survival. We previously identified that patient iPSC-derived microglia (iPS-Mg) harboring the Alzheimer's disease (AD) TREM2 hypomorph display several functional deficits linked to metabolism. To investigate whether these deficits are associated with disruptions in metabolite signaling, we generated common variant, TREM2 and TREM2 variant human iPS-Mg.

View Article and Find Full Text PDF

The triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane protein found in microglia within the brain, and its soluble form (sTREM2) has been shown to reduce amyloid deposition. Whether elevated TREM2-mediated microglial activity decreases the risk of Alzheimer's disease (AD) is unclear. The aim of this study was to assess whether high cerebrospinal fluid (CSF) levels of sTREM2 attenuate the risk of APOE ε4-associated amyloid pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!