Control of superoxide and nitric oxide formation during human sperm capacitation.

Free Radic Biol Med

McGill University Hospital Centre at Royal Victoria Hospital, McGill University, Montréal, QC, Canada.

Published: May 2009

We studied the modulation of superoxide anion (O(2).(-)) and nitric oxide (NO.) generation during human sperm capacitation (changes needed for the acquisition of fertility). The production of NO. (diaminofluorescein-2 fluorescence assay), but not that of O(2).(-) (luminescence assay), related to sperm capacitation was blocked by inhibitors of protein kinase C, Akt, protein tyrosine kinase, etc., but not by those of protein kinase A. Extracellular calcium (Ca(2+)) controlled O(2).(-) synthesis but extra- and intracellular Ca(2+) regulated NO. formation. Zinc inhibited capacitation and formation of O(2).(-) and NO.. Zinc chelators (TPEN and EDTA) and sulfhydryl-targeted compounds (diamide and N-ethylmaleimide) stimulated capacitation and formation of O(2).(-) and NO.; superoxide dismutase (SOD) and nitric oxide synthase inhibitor (L-NMMA) prevented these events. Diphenyliodonium (flavoenzyme inhibitor) blocked capacitation and related O(2).(-) synthesis but promoted NO. formation, an effect canceled by SOD and L-NMMA. NADPH induced capacitation and NO. (but not O(2).(-)) synthesis and these events were blocked by L-NMMA and not by SOD. Integration of these data on O(2).(-) and NO. production during capacitation reinforces the concept that a complex, but flexible, network of factors is involved and probably is associated with rescue mechanisms, so that spermatozoa can achieve successful fertilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.022DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
sperm capacitation
12
o2- synthesis
12
human sperm
8
capacitation
8
o2-
8
protein kinase
8
capacitation formation
8
formation o2-
8
capacitation o2-
8

Similar Publications

Euchrestifolines A-O, fifteen novel carbazole alkaloids with potent anti-ferroptotic activity from Murraya euchrestifolia.

Nat Prod Bioprospect

January 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.

Fifteen novel carbazole alkaloids, euchrestifolines A-O (1-15), were obtained from Murraya euchrestifolia. Their structures were elucidated by spectroscopic analysis, Mosher's ester, calculated ECD, and transition metal complex ECD methods. Notably, euchrestifolines A-C (1-3) are the first naturally occurring pyrrolidone carbazoles to be identified, while euchrestifolines D-F (4-6) represent rare carbazole alkaloids containing a phenylpropanyl moiety; euchrestifoline G (7) features a unique benzopyranocarbazole skeleton.

View Article and Find Full Text PDF

Outcomes and Impact of Device Iterations in Mitral Valve Transcatheter Edge-to-Edge Repair: The REPAIR Study.

JACC Cardiovasc Interv

November 2024

Department of Cardiology, Heart Center, Faculty of Medicine, University of Cologne, Cologne, Germany. Electronic address:

Background: The PASCAL P10 system for mitral valve transcatheter edge-to-edge repair has undergone iterations, including introduction of the narrower Ace implant and the Precision delivery system.

Objectives: The study sought to evaluate outcomes and the impact of PASCAL mitral valve transcatheter edge-to-edge repair device iterations.

Methods: The REPAIR (REgistry of PAscal for mltral Regurgitation) study is an investigator-initiated, multicenter registry including consecutive patients with mitral regurgitation (MR) treated from 2019 to 2024.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide, with incidence and mortality rates persistently climbing despite extensive research efforts. Innovative therapeutic approaches are still needed to extend patients' lives and preserve their health. In the present study, novel supramolecular nanomedicine with both nitric oxide (NO) and antioxidant releasing ability was developed to enhance therapeutic efficacy against vascular injuries.

View Article and Find Full Text PDF

It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!