The automatic identification and classification of spermatogonium images is a very important issue in biomedical engineering research. This paper proposes a scheme for spermatogonium recognition, in which Zernike moments are used to represent image features. First of all, the mathematical morphology method is employed to extract the intact individual cell in every image, and then we normalize these binary images. Then, Zernike moments are calculated from these normalized images, followed by recognizing the spermatogonia through computing similarity of vectors composed with Zernike moments using Euclidean distance. Experimental results demonstrate that the proposed method, based on Zernike moments, outperforms two well-known methods, namely those based on Hu moments and boundary moments. This method has stronger distinguishing ability, showing better performance in discriminating cell images whether belong to the same cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2009.01.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!