AI Article Synopsis

  • The nucleotide sequence of a specific 9.4-kbp region of the AcMNPV genome was analyzed, revealing important genetic elements including the polyhedrin gene.
  • Ten open reading frames (ORFs) were identified, including a significant ORF (1629 nucleotides) located downstream of polyhedrin, which produces a 2000-nucleotide RNA in infected cells.
  • The essential role of the ORF 1629 gene product in virus replication was suggested by the failure to isolate recombinant viruses with a mutation that disrupted its coding sequence.

Article Abstract

The nucleotide sequence of a 9.4-kbp region including the polyhedrin gene of the C6 strain of the Autographa californica nuclear polyhedrosis virus (AcMNPV) genome was determined. These data provide a complete description of the EcoRI-I fragment, which is used to produce transfer vectors for inserting foreign genes into the AcMNPV. Ten potential open reading frames (ORFs) were identified in the complete sequence, on either strand of DNA. The largest of these was 1629 nucleotides in length and was located downstream from the polyhedrin coding sequences, but on the opposite strand of DNA. Northern blot hybridization analysis of ORF 8 (1629) identified an RNA of 2000 nucleotides which was produced in infected cells from 12 hr p.i. and remained until at least 48 hr p.i. S1 nuclease mapping and analysis of cDNA clones located the 3' end of the mRNA at a site 16 nucleotides downstream of the polyhedrin coding sequences. The 5' end of the mRNA was mapped using primer extension analysis of polyadenylated RNA. The mRNA start site was positioned within a late/very late consensus transcription initiation motif (ATAAG), 428 nucleotides upstream from the potential ATG translation initiation codon. The biological significance of the putative gene product was assessed by inserting a synthetic oligonucleotide in the carboxyl terminal coding sequences of ORF 8 (1629) to prematurely terminate translation. Recombinant viruses containing this mutation were not isolated, suggesting that the ORF 1629 gene product is essential for virus replication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0042-6822(91)90770-cDOI Listing

Publication Analysis

Top Keywords

coding sequences
12
orf 1629
12
nucleotide sequence
8
autographa californica
8
californica nuclear
8
nuclear polyhedrosis
8
polyhedrin gene
8
strand dna
8
downstream polyhedrin
8
polyhedrin coding
8

Similar Publications

ABCA4 Deep Intronic Variants Contributed to Nearly Half of Unsolved Stargardt Cases With a Milder Phenotype.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: The purpose of this study was to investigate the contribution and natural progression of ABCA4 deep intronic variants (DIVs) among a Chinese Stargardt disease (STGD) cohort.

Methods: For unsolved STGD probands, DIVs in ABCA4 were detected by next-generation sequencing, and splicing effects were evaluated by in silico tools and validated through minigene experiments. Comprehensive ocular examinations, especially fundus changes, were carried out and analyzed.

View Article and Find Full Text PDF

A high-throughput sequencing identified 1283 lncRNAs in anthers at different stages in Arabidopsis and their relationship with protein-coding genes and miRNAs during anther and pollen development were analyzed. Long non-coding RNAs (lncRNAs) are important regulatory molecules involved in various biological processes. However, their roles in male reproductive development and interactions with miRNAs remained elusive.

View Article and Find Full Text PDF

Viroids, small circular non-coding RNAs, act as infectious pathogens in higher plants, demonstrating high stability despite consisting solely of naked RNA. Their dependence of replication on host machinery poses the question of whether RNA modifications play a role in viroid biology. Here, we explore RNA modifications in the avocado sunblotch viroid (ASBVd) and the citrus exocortis viroid (CEVd), representative members of viroids replicating in chloroplasts and the nucleus, respectively, using LC - MS and Oxford Nanopore Technology (ONT) direct RNA sequencing.

View Article and Find Full Text PDF

Multidimensional Classification and Prediction of Outcome Following Traumatic Brain Injury.

J Head Trauma Rehabil

January 2025

Author Affiliations: Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia (Prof Ponsford and Drs Spitz, Pyman, Carrier, Hicks, and Nguyen); Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (Dr Spitz); TIRR Memorial Hermann Research Center Houston, Texas (Drs Sander and Sherer); and H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine & Harris Health System, Houston, Texas (Drs Sander and Sherer).

Objectives: This study aimed to identify outcome clusters among individuals with traumatic brain injury (TBI), 6 months to 10 years post-injury, in an Australian rehabilitation sample, and determine whether scores on 12 dimensions, combined with demographic and injury severity variables, could predict outcome cluster membership 1 to 3 years post-injury.

Setting: Rehabilitation hospital.

Participants: A total of 467 individuals with TBI, aged 17 to 87 (M = 44.

View Article and Find Full Text PDF

Plant mitochondrial genomes (mitogenomes) experience remarkable levels of horizontal gene transfer (HGT), including the recent discovery that orchids anciently acquired DNA from fungal mitogenomes. Thus far, however, there is no evidence that any of the genes from this interkingdom HGT are functional in orchid mitogenomes. Here, we applied a specialized sequencing approach to the orchid Corallorhiza maculata and found that some fungal-derived tRNA genes in the transferred region are transcribed, post-transcriptionally modified, and aminoacylated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!