A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-organizing maps and learning vector quantization networks as tools to identify vegetable oils. | LitMetric

Self-organizing maps and learning vector quantization networks as tools to identify vegetable oils.

J Agric Food Chem

Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040-Madrid, Spain.

Published: April 2009

Self-organizing map (SOM) and learning vector quantification network (LVQ) models have been explored for the identification of edible and vegetable oils and to detect adulteration of extra virgin olive oil (EVOO) using the most common chemicals in these oils, viz. saturated fatty (mainly palmitic and stearic acids), oleic and linoleic acids. The optimization and validation processes of the models have been carried out using bibliographical sources, that is, a database for developing learning process and internal validation, and six other different databases to perform their external validation. The model's performances were analyzed by the number of misclassifications. In the worst of the cases, the SOM and LVQ models are able to classify more than the 94% of samples and detect adulterations of EVOO with corn, soya, sunflower, and hazelnut oils when their oil concentrations are higher than 10, 5, 5, and 10%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf803520uDOI Listing

Publication Analysis

Top Keywords

learning vector
8
vegetable oils
8
lvq models
8
self-organizing maps
4
maps learning
4
vector quantization
4
quantization networks
4
networks tools
4
tools identify
4
identify vegetable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!