We report on a healthy 50-year-old woman who sought predictive testing due to a family history of Huntington disease (HD). Her 73-year-old mother had recently been confirmed to carry an HD allele of 42 CAG repeats, and started to show symptoms of HD at age 68. Clinically diagnosed HD is present in the maternal grandfather, maternal uncle, and three maternal cousins. Molecular analysis of the HD CAG repeat region identified an allele with 38 CAG repeats in the consultand, giving evidence of allele size contraction from the maternal 42 CAG repeat allele. Mitotic stability of the CAG repeat was demonstrated in DNA from a skin sample with the same allele size (38). In addition to sex of the parent and size of the repeat, recent data analysis of intergenerational stability of the CAG repeat size suggest a gender effect of the offspring on the likelihood of allele contraction or expansion. Discussion of these results with this patient presented challenges in providing appropriate risk assessment for developing the disease herself as well as the future risk to her offspring.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.32720DOI Listing

Publication Analysis

Top Keywords

cag repeat
16
huntington disease
8
allele
8
risk assessment
8
allele cag
8
cag repeats
8
allele size
8
stability cag
8
cag
6
repeat
5

Similar Publications

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

The role of mitochondrial dysfunction in Huntington's disease: Implications for therapeutic targeting.

Biomed Pharmacother

January 2025

School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India. Electronic address:

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a multifaceted neurological disorder characterized by the progressive deterioration of motor, cognitive, and psychiatric functions. Despite a limited understanding of its pathogenesis, research has implicated abnormal trinucleotide cytosine-adenine-guanine CAG repeat expansion in the huntingtin gene (HTT) as a critical factor. The development of innovative strategies is imperative for the early detection of predictive biomarkers, enabling timely intervention and mitigating irreversible cellular damage.

View Article and Find Full Text PDF

Background: Spinocerebellar ataxia type 3 (SCA3) is a hereditary disease caused by abnormally expanded CAG repeats in the ATXN3 gene. The study aimed to identify potential biomarkers for assessing therapeutic efficacy by investigating the associations between expanded CAG repeat size, brain and spinal cord volume loss, and motor functions in patients with SCA3.

Methods: In this prospective, cross-observational study, we analyzed 3D T1-weighted MRIs from 92 patients with SCA3 and 42 healthy controls using voxel-based morphometry and region of interest approaches.

View Article and Find Full Text PDF

Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!