In this paper, the simultaneous separation of several polyphenols such as (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, theophylline, caffeine in green and black teas by capillary electrochromatography (CEC) was developed. Several experimental parameters such as stationary phase type, mobile phase composition, buffer and pH, inner diameter of the columns, sample injection, were evaluated to obtain the complete separation of the analysed compounds. Baseline resolution of the studied polyphenols was achieved within 30 min by using a capillary column (id 100 microm) packed with bidentate C(18) particles for 24.5 cm and a mobile phase composed of 5 mM ammonium acetate buffer pH 4 with H(2)O/ACN (80:20, v/v). The applied voltage and the temperature were set at 30 kV and 20 degrees C. Precision, detection and quantification limits, linearity, and accuracy were investigated. A good linearity (R(2) > 0.9992) was achieved over a concentration working range of 2-100 microg/mL for all the analytes. LOD and LOQ were 1 and 2 microg/mL, respectively, for all studied compounds. The CEC method was applied to the analysis of those polyphenols in green and black tea samples after an extraction procedure. Good recovery data from accuracy studies ranged between 90% and 112% for all analytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.200800634 | DOI Listing |
Int J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:
In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China. Electronic address:
This study comprehensively investigated the Cs signal in 294 sediment core samples from 132 lakes including reservoir and Gobi catchment in China. First, three Cs chrono-markers were observed: the 1963 peak corresponding to the maximum deposition of radioactive debris from global fallout, and two local sub-peaks corresponding to the time of the nuclear tests at Chinese Lop Nor site with a maximum in 1976, and to the Chernobyl accident in 1986. Second, the spatial distribution of sedimentation rates based on the 1963 Cs chrono-marker in Chinese lake sediment cores was studied.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Science and Technology, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
This research aimed to produce a multifunctional bread by adding hydrothermally processed rice bran (RB), green tea extract (GTE), and rosemary extract (RE). In the first step, hydrothermal processing was used to reduce the amount of phytic acid in RB, which decreased by 55 %. Based on the acrylamide amount, texture profile analysis, and color parameters, 3 % RB was selected as the optimum concentration in the bread formulation.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Obstetrics and Gynecology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
Background: The WHO considers anemia in pregnancy a severe public health issue when prevalence surpasses 40%. In response, we conducted a systematic review and meta-analysis to examine anemia among pregnant women in Egypt, focusing on its prevalence, determinants, and associated complications.
Methods: We conducted a systematic literature search for studies published between January 1, 2010, and August 18, 2024, to identify studies from Egypt reporting on anemia in pregnant women, including its prevalence, associated determinants, and complications.
Environ Sci Process Impacts
January 2025
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!