A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioproduction and characterization of a pH responsive self-assembling peptide. | LitMetric

Bioproduction and characterization of a pH responsive self-assembling peptide.

Biotechnol Bioeng

Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.

Published: June 2009

Peptide P(11)-4 (QQRFEWEFEQQ) was designed to self-assemble to form beta-sheets and nematic gels in the pH range 5-7 at concentrations > or =12.6 mM in water. This self-assembly is reversibly controlled by adjusting the pH of the solvent. It can also self-assemble into gels in biological media. This together with its biocompatibility and biodegradability make P(11)-4 an attractive building block for the fabrication of nanoscale materials with uses in, for example, tissue engineering. A limitation to large-scale production of such peptides is the high cost of solid phase chemical synthesis. We describe expression of peptide P(11)-4 in the bacterium Escherichia coli from constructs carrying tandem repeats of the peptide coding sequence. The vector pET31b+ was used to express P(11)-4 repeats fused to the ketosteroid isomerase protein which accumulates in easily recoverable inclusion bodies. Importantly, the use of auto-induction growth medium to enhance cell density and protein expression levels resulted in recovery of 2.5 g fusion protein/L culture in both shake flask and batch fermentation. Whole cell detergent lysis allowed recovery of inclusion bodies largely composed of the fusion protein. Cyanogen bromide cleavage followed by reverse phase HPLC allowed purification of the recombinant peptide with a C-terminal homoserine lactone (rP(11)-4(hsl)). This recombinant peptide formed pH dependent hydrogels, displayed beta-structure measured by circular dichroism and fibril formation observed by transmission electron microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.22274DOI Listing

Publication Analysis

Top Keywords

peptide p11-4
8
inclusion bodies
8
recombinant peptide
8
peptide
6
bioproduction characterization
4
characterization responsive
4
responsive self-assembling
4
self-assembling peptide
4
peptide peptide
4
p11-4
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!