In the present study, we investigated the pre-attentive processing of low-level acoustic properties and the impact of this mechanism on functional lateralization in the human auditory system. Mismatch negativity (MMN) of the event-related potentials (ERP) were recorded in 19 adult humans who passively listened to a standard stimulus and spectrally and temporally deviant sounds. We predicted modulations of the MMN amplitude in response to spectrally and temporally graded deviants. Based on recent models of functional hemispheric lateralisation, we further hypothesized a left-lateralized source of the MMN in response to temporal deviants and, in contrast, a right-lateralized source of the MMN in response to spectral deviants. In agreement with our hypothesis, we showed that spectrally and temporally deviant sounds lead to robust MMNs recorded from frontocentral scalp electrodes. The amplitudes of the MMNs were modulated by the grade of spectral and temporal deviation from the standard sound. Furthermore, by using an assumption-free source localization approach (LORETA) we demonstrated functionally lateralized activations with dominance of the right hemisphere for the processing of spectral characteristics and of the left hemisphere for the processing of temporal acoustic properties. Results of our study further contribute to the ongoing debate on the role of low-level acoustic feature perception in functional hemispheric lateralization in the context of auditory and speech processing. Our data indicate that the pre-attentive feature-specific deviant processing is mediated by partly distinct neural subsystems for temporal and spectral information.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10548-009-0085-6DOI Listing

Publication Analysis

Top Keywords

spectrally temporally
12
human auditory
8
auditory system
8
low-level acoustic
8
acoustic properties
8
temporally deviant
8
deviant sounds
8
functional hemispheric
8
source mmn
8
mmn response
8

Similar Publications

Hyperspectral Imaging for High Throughput Optical Spectroscopy of pL Droplets.

Anal Chem

January 2025

Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.

View Article and Find Full Text PDF

We present a widefield fluorescence microscope that integrates an event-based image sensor (EBIS) with a CMOS image sensor (CIS) for ultra-fast microscopy with spectral distinction capabilities. The EBIS achieves a temporal resolution of ∼10s (∼ 100,000 frames/s), while the CIS provides diffraction-limited spatial resolution. A diffractive optical element encodes spectral information into a diffractogram, which is recorded by the CIS.

View Article and Find Full Text PDF

Ultrashort pulse sources are complex and resource-intensive. To reduce overhead and simplify operations, we had previously developed a method to deliver ultra-short pulses through fiber-optic links to multiple locations and to characterize them remotely using a compact detector module. We created a pulse pair with varying delays at the central location using a pulse shaper before launching them into the fiber links and measured the first and second-order autocorrelations at the satellite location.

View Article and Find Full Text PDF

Scattering-type scanning near-field optical microscopy (-SNOM) under the excitation of single cycle picosecond (ps) pulse provides access to terahertz (THz) time-resolved nanoscopy. However, the development of THz nanoscopy has been greatly limited due to the inherently low efficiency of the scattered field and the convolution of the intrinsic material response with the extrinsic response of the cantilevered tip. In this work, we quantitatively study the near-field time-delayed pulse transients of resonant cantilevered tips, observing localized tip-enhanced coupling as well as delocalized collective charge oscillations propagating as resonant surface waves along cantilevered tips.

View Article and Find Full Text PDF

Electric-field oscillations are now experimentally accessible in the THz-to-PHz frequency range. Their measurement delivers the most comprehensive information content attainable by optical spectroscopy - if performed with high sensitivity. Yet, the trade-off between bandwidth and efficiency associated with the nonlinear mixing necessary for field sampling has so far strongly restricted sensitivity in applications such as field-resolved spectroscopy of molecular vibrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!