Bif-1/endophilin B1: a candidate for crescent driving force in autophagy.

Cell Death Differ

Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA.

Published: July 2009

Autophagy is an intracellular bulk degradation system that plays a vital role in maintaining cellular homeostasis. This degradation process involves dynamic membrane rearrangements resulting in the formation of double-membraned autophagosomes. However, the driving force for generating curvature and deformation of isolation membranes remains a mystery. Bax-interacting factor 1 (Bif-1), also known as SH3GLB1 or Endophilin B1, was originally discovered as a Bax-binding protein. Bif-1 contains an amino-terminal N-BAR (Bin-Amphiphysin-Rvs) domain and a carboxy-terminal SH3 (Src-homology 3) domain and shows membrane binding and bending activities. It has been shown that Beclin1 is involved in the nucleation of autophagosomal membranes through an unknown mechanism. It is interesting that, Bif-1 forms a complex with Beclin1 through ultraviolet irradiation resistant-associated gene (UVRAG) and promotes the activation of the class III PI3 kinase, Vps34, in mammalian cells. In response to nutrient starvation, Bif-1 accumulates in punctate foci where it co-localizes with LC3, Atg5, and Atg9. Furthermore, Bif-1-positive, crescent-shaped small vesicles expand by recruiting and fusing with Atg9-positive small membranes to complete autophagosome formation. This review highlights the role of Bif-1 in the regulation of autophagy and discusses the potential involvement of Bif-1 in the biogenesis of membranes for the formation of autophagosomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697278PMC
http://dx.doi.org/10.1038/cdd.2009.19DOI Listing

Publication Analysis

Top Keywords

driving force
8
bif-1
6
bif-1/endophilin candidate
4
candidate crescent
4
crescent driving
4
force autophagy
4
autophagy autophagy
4
autophagy intracellular
4
intracellular bulk
4
bulk degradation
4

Similar Publications

Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.

View Article and Find Full Text PDF

As the pace of enterprise digital transformation accelerates, intellectual capital (IC) has become a core driving force of gaining market competitive advantages and enhancing value creation capabilities. The paper aims to investigate the impact of IC and its components on financial performance of Chinese ecological protection and environmental governance companies during 2018-2021. In addition, the moderating effect of digital transformation between them is examined.

View Article and Find Full Text PDF

This study introduces a new method for synthesizing Cu-containing metastable phases through ion exchange. Traditionally, CuCl has been used as a Cu ion source for solid-state ion exchanges; however, its thermodynamic driving force is often insufficient for complete ion exchange with Li-containing precursors. First-principles calculations have identified CuSO and CuPO as more powerful alternatives, providing a higher driving force than CuCl.

View Article and Find Full Text PDF

Bioenergetic trade-offs can reveal the path to superior microbial CO fixation pathways.

mSystems

January 2025

Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.

A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).

View Article and Find Full Text PDF

Aim: The aim of this study was to explore the role of managers and employees with an assigned responsibility (i.e. inspirers) when integrating recovery-enhancing activities into everyday work in a primary health care setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!