F(1)-ATPase is an ATP-driven motor in which gammaepsilon rotates in the alpha(3)beta(3)-cylinder. It is attenuated by MgADP inhibition and by the epsilon subunit in an inhibitory form. The non-inhibitory form of epsilon subunit of thermophilic Bacillus PS3 F(1)-ATPase is stabilized by ATP-binding with micromolar K(d) at 25 degrees C. Here, we show that at [ATP]>2 microM, epsilon does not affect rotation of PS3 F(1)-ATPase but, at 200 nM ATP, epsilon prolongs the pause of rotation caused by MgADP inhibition while the frequency of the pause is unchanged. It appears that epsilon undergoes reversible transition to the inhibitory form at [ATP] below K(d).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2009.02.038DOI Listing

Publication Analysis

Top Keywords

epsilon subunit
12
thermophilic bacillus
8
mgadp inhibition
8
inhibitory form
8
ps3 f1-atpase
8
epsilon
6
subunit rotation
4
rotation thermophilic
4
f1-atpase
4
bacillus f1-atpase
4

Similar Publications

Unveiling novel pathways for drug discovery forms the foundation of a new era in the combat against tuberculosis. The discovery of a novel drug, bedaquiline, targeting mycobacterial ATP synthase highlighted the targetability of the energy metabolism pathway. The significant potency of bedaquiline against heterogeneous population of marks ATP synthase as an important complex of the electron transport chain.

View Article and Find Full Text PDF

An optical BOD biosensor based on intracellular ATP measurements in genetically modified Saccharomyces cerevisiae.

Anal Sci

December 2024

School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.

A biosensor for biochemical oxygen demand (BOD) was developed based on intracellular 5'-adenosine triphosphate (ATP) measurements in Saccharomyces cerevisiae. Intracellular ATP was measured using an engineered protein named ATeam, comprising a bacterial FF-ATP synthase ε subunit sandwiched between cyan fluorescent protein and mVenus, a modified yellow fluorescent protein. Because the binding of ATP to ATeam induces changes in the fluorescence spectra owing to Fӧrster resonance energy transfer, S.

View Article and Find Full Text PDF

Background: Kinectin 1 () is a membrane protein involved in intracellular organelle motility. However, the role of in human pan-cancer lacks systematic analysis and evaluation. The aim of this study is to evaluate the expression profile and clinical value in human cancers by performing a pan-cancer analysis of .

View Article and Find Full Text PDF

In spite of being dispensable for catalysis, Dpb2, the second largest subunit of leading strand DNA polymerase (Polymerase ε) is essential for cell survival in budding yeast. Dpb2 physically connects polymerase epsilon with the replicative helicase (CMG,Cdc45-Mcm-GINS) by interacting with its Psf1 subunit. Dpb2-Psf1 interaction has been shown to be critical for incorporating polymerase ε into the replisome.

View Article and Find Full Text PDF

Chemogenetic Modulation of Preoptic Neurons Decreases Body Temperature and Heart Rate.

Int J Mol Sci

December 2024

The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.

The preoptic area of the hypothalamus is critical for regulation of brain-body interaction, including circuits that control vital signs such as body temperature and heart rate. The preoptic area contains approximately 70 molecularly distinct cell types. The gene is expressed in a subset of preoptic area cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!