New insights into the respiratory chains of the chemolithoautotrophic and hyperthermophilic bacterium Aquifex aeolicus.

J Proteome Res

Laboratoire de Bioénergétique et Ingénierie des Protéines, IBSM-CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France.

Published: April 2009

Aquifex aeolicus, a highly hyperthermophilic bacterium, grows chemolithoautotrophically at 85 degrees C, with hydrogen as electron donor and oxygen as electron acceptor in the presence of a sulfur compound. Stimulated by its exceptional physiological properties, we have set out to study the oxygen metabolism of this microorganism. With the use of an unconventional integrative proteomic approach combining separation of membrane proteins by Blue-Native electrophoresis, detection of enzyme activities in-gel and direct protein identification by two-dimensional liquid chromatography and tandem mass spectrometry (2D nanoLC-MS/MS), we have obtained evidence for the presence of functional respiratory enzymes in membranes of A. aeolicus cultivated with H2/O2/S0 as well as an organization in stable superstructures of some of these individual complexes. This study has revealed the assembly of the bc complex and a cytochrome coxidase as a supercomplex and possible associations of electron transfer proteins and complexes involved in oxygen reduction such as sulfide quinone reductase, cytochrome c oxidase, bc complex, membrane-bound hydrogenase I and quinol oxidase. Electron transfer measurements on solubilized membranes have demonstrated the existence of uncommon respiratory chains (sulfide/oxygen as well as hydrogen/oxygen) in the cell growth conditions used. Moreover, the subunit composition of some of the complexes has been more precisely described, particularly that of complex I, leading for the first time to evidence of the presence of several isoforms of this complex. We can propose from our results (in-gel identification and functional data) that the bioenergetic pathways (sulfur and oxygen reductions) may be organized in supramolecular structures in A. aeolicus, as we have previously purified and characterized a hydrogen-oxidizing sulfur-reducing supercomplex from this bacterium.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr8007946DOI Listing

Publication Analysis

Top Keywords

respiratory chains
8
hyperthermophilic bacterium
8
aquifex aeolicus
8
evidence presence
8
electron transfer
8
insights respiratory
4
chains chemolithoautotrophic
4
chemolithoautotrophic hyperthermophilic
4
bacterium aquifex
4
aeolicus
4

Similar Publications

Rare dual MYH9-ROS1 fusion variants in a patient with lung adenocarcinoma: A case report.

Medicine (Baltimore)

January 2025

Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.

Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.

View Article and Find Full Text PDF

Chalcogen Substitution-Modulated Molecule-Electrode Coupling in Single-Molecule Junctions.

Langmuir

January 2025

Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.

Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.

View Article and Find Full Text PDF

Thrips tabaci is the main thrips species affecting onion and related species. It is a cryptic species complex comprising three phylogenetic groups characterized by different reproductive modes (thelytoky or arrhenotoky) and host plant specialization. Thrips tabaci populations vary widely in genetic diversity, raising questions about the factor(s) that drive this diversity.

View Article and Find Full Text PDF

Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway.

J Integr Plant Biol

January 2025

Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.

Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.

View Article and Find Full Text PDF

High-Coordination and Nb-Bridging of Bimetallic Amorphous P-Nb-W-P Clusters in Carbon Nanospheres for High-Performance Sodium-Ion Hybrid Capacitors.

Adv Sci (Weinh)

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China.

Amorphous clusters are gaining prominence as prospective hosts for sodium-ion hybrid capacitors (SIHCs), but their efficacy is still affected by atomic coordination. Optimization of ion storage and charge transport can be achieved through high coordination and bimetallic configurations. Herein, high-coordination amorphous P-Nb-W-P (Nb/W-P) clusters are skillfully tailored by bridging Nb into the second shell of W in the W-P configuration, nested in situ in conductive and stable N, P co-doped carbon nanospheres (Nb/W-P@NPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!