Cardiovascular complications such as hypertension are a continuous concern in patients with autosomal dominant polycystic kidney disease (ADPKD). The PKD2 encoding for polycystin-2 is mutated in approximately 15% of ADPKD patients. Here, we show that polycystin-2 is localized to the cilia of mouse and human vascular endothelial cells. We demonstrate that the normal expression level and localization of polycystin-2 to cilia is required for the endothelial cilia to sense fluid shear stress through a complex biochemical cascade, involving calcium, calmodulin, Akt/PKB, and protein kinase C. In response to fluid shear stress, mouse endothelial cells with knockdown or knockout of Pkd2 lose the ability to generate nitric oxide (NO). Consistent with mouse data, endothelial cells generated from ADPKD patients do not show polycystin-2 in the cilia and are unable to sense fluid flow. In the isolated artery, we further show that ciliary polycystin-2 responds specifically to shear stress and not to mechanical stretch, a pressurized biomechanical force that involves purinergic receptor activation. We propose a new role for polycystin-2 in transmitting extracellular shear stress to intracellular NO biosynthesis. Thus, aberrant expression or localization of polycystin-2 to cilia could promote high blood pressure because of inability to synthesize NO in response to an increase in shear stress (blood flow).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085025PMC
http://dx.doi.org/10.1161/CIRCRESAHA.108.192765DOI Listing

Publication Analysis

Top Keywords

shear stress
20
endothelial cells
12
polycystin-2 cilia
12
ciliary polycystin-2
8
nitric oxide
8
adpkd patients
8
patients polycystin-2
8
localization polycystin-2
8
sense fluid
8
fluid shear
8

Similar Publications

Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.

View Article and Find Full Text PDF

Four-dimensional flow magnetic resonance imaging (4D flow MRI) was utilized to analyze an aortic dissection with an aberrant right subclavian artery, revealing vortex formation and an increased oscillatory shear index (OSI), both indicative of variations in wall shear stress. An elevated OSI has been associated with an elevated risk of aortic dissection.

View Article and Find Full Text PDF

Diet is one of a limited set of key ecological parameters defining primate species. A detailed understanding of dental functional correlates with primate diet is a key component for accurate dietary inference in fossil primates. Although considerable effort has been devoted to understanding post-canine dental function, incisor function remains poorly understood.

View Article and Find Full Text PDF

Blood coagulation is a highly regulated injury response that features polymerization of fibrin fibers to prevent the passage of blood from a damaged vascular endothelium. A growing body of research seeks to monitor coagulation in microfluidic systems but fails to capture coagulation as a response to disruption of the vascular endothelium. Here we present a device that allows compression injury of a defined segment of a microfluidic vascular endothelium and the assessment of coagulation at the injury site.

View Article and Find Full Text PDF

Rationale: Coronary artery plaques often develop in regions subjected to disturbed shear stress (DSS), yet the mechanisms underlying this phenomenon remain poorly understood. Our study aimed to elucidate the unknown role of MAPK6 in shear stress and plaque formation.

Methods: In vitro and in vivo experiments, RNA-seq, CO-IP and proteomic analysis, combined with single-cell RNA-seq datasets were used to reveal the upstream and downstream mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!