The extracellular enveloped virus (EEV) form of vaccinia virus (VACV) is surrounded by two lipid envelopes. This presents a topological problem for virus entry into cells, because a classical fusion event would only release a virion surrounded by a single envelope into the cell. Recently, we described a mechanism in which the EEV outer membrane is disrupted following interaction with glycosaminoglycans (GAGs) on the cell surface and thus allowing fusion of the inner membrane with the plasma membrane and penetration of a naked core into the cytosol. Here we show that both the B5 and A34 viral glycoproteins are required for this process. A34 is required to recruit B5 into the EEV membrane and B5 acts as a molecular switch to control EEV membrane rupture upon exposure to GAGs. Analysis of VACV strains expressing mutated B5 proteins demonstrated that the acidic stalk region between the transmembrane anchor sequence and the fourth short consensus repeat of B5 are critical for GAG-induced membrane rupture. Furthermore, the interaction between B5 and A34 can be disrupted by the addition of polyanions (GAGs) and polycations, but only the former induce membrane rupture. Based on these data we propose a revised model for EEV entry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885056 | PMC |
http://dx.doi.org/10.1099/vir.0.009092-0 | DOI Listing |
J Fluid Mech
December 2024
Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Compiégne, France.
Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.
View Article and Find Full Text PDFAtherosclerosis, a slowly progressing inflammatory disease, is characterized by the presence of monocyte-derived macrophages. Interventions targeting the inflammatory characteristics of atherosclerosis hold promising potential. Although interleukin (IL)-10 is widely acknowledged for its anti-inflammatory effects, systemic administration of IL-10 has limitations due to its short half-life and significant systemic side effects.
View Article and Find Full Text PDFAm J Obstet Gynecol
January 2025
Department of Pediatrics, Duke University School of Medicine, Durham, NC.
Background: Preterm prelabor rupture of membranes (PPROM) before or around the limit of fetal viability is associated with serious maternal and neonatal complications including chorioamnionitis, extremely preterm birth, and pulmonary hypoplasia.
Objectives: To describe contemporary outcomes of extremely preterm infants born after prolonged periviable PPROM, and to identify perinatal factors associated with survival and survival without severe neurodevelopmental impairment (NDI).
Study Design: Among actively treated infants born alive at <27 weeks' gestational age (GA) in centers of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network from 2012 to 2018, the outcomes of survival and survival without severe NDI at 22-26 months' corrected age were compared between infants exposed to prolonged (≥120 hours) periviable (<24 weeks' GA) PPROM and unexposed infants born after rupture of membranes ≤18 hours before delivery or at delivery, adjusting for birth GA, sex, multiple gestation, antenatal steroids, small for gestational age (SGA), insurance, and center.
Int J Pharm
January 2025
NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain. Electronic address:
Cell microencapsulation technologies allow non-autologous implantation of therapeutic cells for sustained drug delivery purposes. The perm-selective membrane of these systems provides resistance to rupture, stablishes the upper molecular weight limit in bidirectional diffusion of molecules, and affects biocompatibility. Thus, despite being a decisive factor to succeed in terms of biosafety and therapeutic efficacy, little progress has been made in its optimization so far.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea. Electronic address:
Pollen tubes are crucial for angiosperm plants, as they deliver sperm gametes for the essential process of double fertilization. Understanding the molecular mechanisms behind pollen tube germination and growth is critical; however, these processes remain partially elucidated in monocot cereal crops. Rapid Alkalinization Factor (RALF), a small peptide of about 5 kDa, binds to the CrRLK1L receptor and plays a role in various plant physiological processes, including reproduction and tip growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!