Hepatitis C virus (HCV) protein synthesis is mediated by a highly conserved internal ribosome entry site (IRES), mostly located at the 5' untranslatable region (UTR) of the viral genome. The translation mechanism is different from that used by cellular cap-mRNAs, making IRESs an attractive target site for new antiviral drugs. The present work characterizes a chimeric RNA molecule (HH363-50) composed of two inhibitors: a hammerhead ribozyme targeting position 363 of the HCV genome and an aptamer directed towards the essential stem-loop structure in domain IV of the IRES region (which contains the translation start codon). The inhibitor RNA interferes with the formation of a translationally active complex, stalling its progression at the level of 80S particle formation. This action is likely related to the effective and specific blocking of HCV IRES-dependent translation achieved in Huh-7 cells. The inhibitor HH363-50 also reduces HCV RNA levels in a subgenomic replicon system. The present findings suggest that HH363-50 could be an effective anti-HCV compound and highlight the possibilities of antiviral agents based on RNA molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/vir.0.008821-0 | DOI Listing |
Rev Gastroenterol Peru
January 2025
Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Gastroenterología, Hospital Sótero del Río, Santiago, Chile.
Introduction: Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections are a global public health concern. In 2019, there were 295.9 million people with chronic hepatitis B and 57.
View Article and Find Full Text PDFIntroduction: 58 million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development.
View Article and Find Full Text PDFAnal Methods
November 2017
Institute of Biomedical Chemistry, ul. Pogodinskaya, 10, Moscow, Russia.
A combined AFM/MS method was employed for protein registration in solution. This method is based on reversible specific capturing of a target protein from a large volume of analyzed solution onto a small sensor area of a chip with immobilized aptamer ligands. Fishing of the core antigen of hepatitis C virus (HCVcoreAg) from 10 M solution of this protein in buffer was carried out.
View Article and Find Full Text PDFIntern Med J
January 2025
Department of Infectious Diseases, Westmead Hospital, Sydney, New South Wales, Australia.
Background: With improved outcomes in human immunodeficiency virus (HIV) due to the use of anti-retroviral therapy, ensuring adequate preventative healthcare and management of HIV-related comorbidities is essential.
Aims: To evaluate adherence with recommended guidelines for comorbidity and immunisation status screening amongst people living with HIV within a hospital-based setting across two timepoints.
Methods: A single-centre retrospective case series was conducted at a hospital between 2011 and 2021.
Toxicology
January 2025
Department of Pharmacology, Shantou University Medical College, Shantou 515041, China. Electronic address:
Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!