The ecological importance of severe wildfires: some like it hot.

Ecol Appl

Avian Science Center, Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA.

Published: December 2008

Many scientists and forest land managers concur that past fire suppression, grazing, and timber harvesting practices have created unnatural and unhealthy conditions in the dry, ponderosa pine forests of the western United States. Specifically, such forests are said to carry higher fuel loads and experience fires that are more severe than those that occurred historically. It remains unclear, however, how far these generalizations can be extrapolated in time and space, and how well they apply to the more mesic ponderosa pine systems and to other forest systems within the western United States. I use data on the pattern of distribution of one bird species (Black-backed Woodpecker, Picoides arcticus) as derived from 16465 sample locations to show that, in western Montana, this bird species is extremely specialized on severely burned forests. Such specialization has profound implications because it suggests that the severe fires we see burning in many forests in the Intermountain West are not entirely "unnatural" or "unhealthy." Instead, severely burned forest conditions have probably occurred naturally across a broad range of forest types for millennia. These findings highlight the fact that severe fire provides an important ecological backdrop for fire specialists like the Black-backed Woodpecker, and that the presence and importance of severe fire may be much broader than commonly appreciated.

Download full-text PDF

Source
http://dx.doi.org/10.1890/08-0895.1DOI Listing

Publication Analysis

Top Keywords

ponderosa pine
8
western united
8
united states
8
bird species
8
black-backed woodpecker
8
severely burned
8
severe fire
8
ecological severe
4
severe wildfires
4
wildfires hot
4

Similar Publications

A spatial triage of at-risk conifer forests to support seed collection efforts and sustainable forestry.

J Environ Manage

January 2025

Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

At-risk conifer stands growing in hot, arid conditions at low elevations may contain the most climate change-adapted seeds needed for sustainable forestry. This study used a triage framework to identify high-priority survey areas for Pinus ponderosa (Pipo) within a large region, by intersecting an updated range map with a map of seed zones and elevation bands (SZEBs). The framework assesses place-based climate change and potential wildfire risks by rank-order across 740 potential collection units.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how various external (like climate and competition) and internal (like population density) factors affect the growth of two pine species in isolated populations.
  • By analyzing data on when and where these trees matured, the researchers found that no single factor consistently dominated population dynamics across all locations and times.
  • The results highlight the necessity of considering multiple influences to accurately predict the behavior and viability of colonizing populations.
View Article and Find Full Text PDF

Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and both the type and reoccurrence of fuel treatments are likely to strongly influence stand trajectories.

View Article and Find Full Text PDF

The frequency and severity of drought events are predicted to increase due to anthropogenic climate change, with cascading effects across forested ecosystems. Management activities such as forest thinning and prescribed burning, which are often intended to mitigate fire hazard and restore ecosystem processes, may also help promote tree resistance to drought. However, it is unclear whether these treatments remain effective during the most severe drought conditions or whether their impacts differ across environmental gradients.

View Article and Find Full Text PDF

First Report of Diplodia Shoot Blight and Canker Disease Caused by on Ponderosa Pine in Colorado, USA.

Plant Dis

November 2024

Colorado State University, Department of Agricultural Biology, 1177 Campus Delivery, Fort Collins, Colorado, United States, 80523;

Article Synopsis
  • Diplodia shoot blight and canker disease (DSB) is caused by the fungal pathogen Diplodia sapinea and primarily affects 2-3 needled pines, such as ponderosa pine, resulting in various symptoms including necrotic needles, cankers, and dieback.
  • The pathogen can exist without visible symptoms in trees, making it difficult to detect, and outbreaks are more common in stressed environments like nurseries and seed orchards.
  • Although D. sapinea has not been previously reported in Colorado, studies confirmed its presence and pathogenicity after observing symptoms in ponderosa pines in Wyoming in 2018 and discovering symptomatic trees in Colorado in 2021.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!