Objective: Previous work has showed that excess iron accumulation is harmful to reproduction and even promotes death; however, whether the multiple biological toxicity of iron (Fe) exposure could be transferred to progeny remains unknown. The present study used Caenorhabditis elegans to analyze the multiple toxicities of iron exposure and their possible transferable properties.
Methods: Three concentrations of iron sulfate solution (2.5 micromol/L, 75 micromol/L, and 200 micromol/L) were used. The endpoints of lifespan, body size, generation time, brood size, head thrash and body bend frequencies, and chemotaxis plasticity were selected to investigate Fe toxicity and its effect on progeny in Caenorhabditis elegans.
Results: The Fe toxicity could cause multiple biological defects in a dose-dependent manner by affecting different endpoints in nematodes. Most of the multiple biological defects and behavior toxicities could be transferred from Fe-exposed Caenorhabditis elegans to their progeny. Compared to the parents, no recovery phenotypes were observed for some of the defects in the progeny, such as body bend frequency and life span. We further summarized the defects caused by Fe exposure into 2 groups according to their transferable properties.
Conclusion: Our results suggest that Fe exposure could cause multiple biological defects, and most of these severe defects could be transferred from Fe exposed nematodes to their progeny.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0895-3988(09)60004-0 | DOI Listing |
Biosens Bioelectron
January 2025
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China. Electronic address:
Highly ordered ultrathin nanosheets (NSs) of Au(I)-Cys were fabricated through aggregation-induced supramolecular self-assembly triggered by an extended agitation in an alkaline environment. The synthesized Au(I)-Cys NSs exhibited intense luminescence and exceptional chirality. Remarkably, additions of biothiols to Au(I)-Cys NSs have significantly enhanced their luminescence emission, and circular dichroism properties coupled with morphological modulations into nanoflowers, nanodendrites, or closely packed aggregates.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA. Electronic address:
Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream.
View Article and Find Full Text PDFDev Cell
January 2025
Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Graduate School of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Divisions of Gastroenterology, Hepatology & Nutrition, and Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA. Electronic address:
Recent advancements in pluripotent stem cell and synthetic tissue technology have brought significant breakthroughs in studying early embryonic development, particularly within the first trimester of development in humans. However, during fetal stage development, investigating further biological events represents a major challenge, partly due to the evolving complexity and continued interaction across multiple organ systems. To bridge this gap, we propose an "in toto" biological framework that leverages a triad of technologies: synthetic tissues, intravital microscopy, and computer vision to capture in vivo cellular morphodynamics, conceptualized as single-cell choreography.
View Article and Find Full Text PDFTissue Cell
December 2024
Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran. Electronic address:
Mesenchymal stem cells (MSCs) have several important properties that make them desirable for regenerative medicine. These properties include immunomodulatory ability, growth factor production, and differentiation into various cell types. Despite extensive research and promising results in clinical trials, our understanding of MSC biology, their mechanism of action, and their targeted and routine use in clinics is limited.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Institute of Continuum Mechanics and Biomechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90762 Fürth, Germany. Electronic address:
Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!