Copper-induced structural rearrangements of Abeta40 structure and its redox properties are described in this study. Electrochemical and fluorescent methods are used to characterise the behaviour of Abeta-Cu species. The data suggest that time-dependent folding of Abeta-Cu species may cause changes in the redox potentials.Extracellular deposits of beta-amyloid (Abeta) into senile plaques are the major features observed in brains of Alzheimer's disease (AD) patients. A high concentration of copper has been associated with insoluble amyloid plaques. It is known that Abeta(1-40) can bind copper with high affinity, but electrochemical properties of Abeta(1-40)-Cu complexes are not well-characterised. In this study we demonstrate that complexation of copper (both as Cu(I) and Cu(II)) by Abeta(1-40) reduces the metal electrochemical activity. Formation of copper-Abeta(1-40) complexes is associated with alteration of the redox potential. The data reveal significant redox activity of fresh Abeta-copper solutions. However, copper-induced structural rearrangements of the peptide, documented by CD, correspond with time-dependent changes of formal reduction potentials (E(0')) of the complex. Fluorescent and electrochemical (cyclic voltammetry and differential pulse voltammetry) techniques suggest that reduction of the redox activity by Abeta-Cu complexes could be attributed to conformational changes that diminished copper accessibility to the external environment. According to our evidence, conformational rearrangements, induced by copper binding to amyloid, elongate the time necessary to attain the same beta-sheet content as for the metal-free peptide. Although the redox activity of Abeta-Cu complexes diminishes in a time-dependent manner, they are not completely devoid of toxicity as they destabilize red blood cells osmotic fragility, even after prolonged incubation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.200800732DOI Listing

Publication Analysis

Top Keywords

redox activity
12
copper cui
8
cui cuii
8
copper-induced structural
8
structural rearrangements
8
abeta-cu species
8
activity abeta-cu
8
abeta-cu complexes
8
copper
6
redox
6

Similar Publications

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.

View Article and Find Full Text PDF

The Impact of Cooking on Antioxidant and Enzyme Activities in Ruichang Yam Polyphenols.

Foods

December 2024

Jiangxi Ecological Chemical Engineering Technology Research Center, Jiujiang University, Jiujiang 332005, China.

In this study, the total polyphenol content (TPC), total flavonoid content (TFC), and biological activity of yam polyphenols (including free phenolics, conjugated phenolics, and bound phenolics) were investigated during home cooking. Polyphenol components were preliminary detected in raw yam by HPLC, including 2, 4-dihydroxybenzoic acid, syringic acid, vanillic acid, 4-coumaric acid, and sinapic acid. TPC and TFC of soluble conjugated polyphenols were the main phenolic compounds in Ruichang yam.

View Article and Find Full Text PDF

The objective of this study was to measure the different redox biomarker levels within the follicular fluid (FF) and evaluate correlations with embryo quality using the one follicle-one oocyte/embryo approach. The prospective study included 54 women (average age 34.6 ± 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!