Behaviours evolve by iterations of natural selection, but we have few insights into the molecular and neural mechanisms involved. Here we show that some Caenorhabditis elegans wild strains switch between two foraging behaviours in response to subtle changes in ambient oxygen. This finely tuned switch is conferred by a naturally variable hexacoordinated globin, GLB-5. GLB-5 acts with the atypical soluble guanylate cyclases, which are a different type of oxygen binding protein, to tune the dynamic range of oxygen-sensing neurons close to atmospheric (21%) concentrations. Calcium imaging indicates that one group of these neurons is activated when oxygen rises towards 21%, and is inhibited as oxygen drops below 21%. The soluble guanylate cyclase GCY-35 is required for high oxygen to activate the neurons; GLB-5 provides inhibitory input when oxygen decreases below 21%. Together, these oxygen binding proteins tune neuronal and behavioural responses to a narrow oxygen concentration range close to atmospheric levels. The effect of the glb-5 gene on oxygen sensing and foraging is modified by the naturally variable neuropeptide receptor npr-1 (refs 4, 5), providing insights into how polygenic variation reshapes neural circuit function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature07820 | DOI Listing |
Plant Physiol Biochem
January 2025
Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:
Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.
View Article and Find Full Text PDFChemphyschem
January 2025
University of Leeds, School of Chemistry, Woodhouse Lane, LS2 9JT, Leeds, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The orthorhombic structure of FeNbO4, where the Fe and Nb cations are distributed randomly over the octahedral 4c sites, has shown excellent promise as an anode material in solid oxide fuel cells. We have used DFT+U-D2 calculations to explore the adsorption and dissociation of H2 molecules and the formation reaction of water at the (010) and (111) surfaces. Simulations of the surface properties confirmed that the bandgaps are significantly reduced compared to the bulk material.
View Article and Find Full Text PDFJ AOAC Int
January 2025
Thermo Fisher Scientific, 1214 Oakmead Parkway, Sunnyvale, CA, USA 94085.
Background: Per- and polyfluoroalkyl substances (PFAS) comprise thousands of fluorinated chemicals. They are of growing concern because many PFAS compounds are persistent and toxic. Food contact materials (FCM) containing PFAS pose multiple exposure pathways to humans, prompting twelve states to enact laws banning FCM with PFAS levels exceeding 100 ppm of TOF.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Family Medicine, Merkezefendi District Health Directorate, Denizli, Turkey.
Introduction: Post-COVID-19 syndrome refers to the occurrence of symptoms lasting more than 4 weeks in individuals who have recovered from COVID-19. This study aims to investigate the post-COVID-19 symptoms in healthcare professionals.
Methodology: This descriptive study included 166 healthcare professionals who had tested positive for COVID-19 via PCR at least four weeks prior and subsequently presented to the Family Medicine Clinic at Pamukkale University Training and Research Hospital.
Exp Physiol
January 2025
Integrative Cerebrovascular and Environmental Physiology SB Laboratory, University of Guelph, Guelph, Ontario, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!