Brucellosis is a bacterial zoonotic disease of major global importance. Natural hosts for Brucella species include animals of economic significance, such as cattle and small ruminants. Controlling brucellosis in natural hosts by high-throughput serological testing followed by the slaughter of seropositive animals helps to prevent disease transmission. This study aimed to convert an existing competitive enzyme-linked immunosorbent assay (cELISA), used for the serodiagnosis of brucellosis in ruminants, to two electrochemiluminescence (ECL) immunoassays on the Meso Scale Discovery (MSD) platform. The first assay employed a conventional plate washing step as part of the protocol. The second was a no-wash assay, made possible by the proximity-based nature of ECL signal generation by the MSD platform. Both ECL wash and no-wash assays closely matched the parent cELISA for diagnostic sensitivity and specificity. The results also demonstrated that both ECL assays met World Organization for Animal Health (OIE) standards, as defined by results for the OIE standard serum (OIEELISA(SP)SS). This report is the first to describe an ECL assay incorporating lipopolysaccharide, an ECL assay for serodiagnosis of a bacterial infectious disease, a separation-free (no-wash) ECL assay for the detection of serum antibodies, and the use of the MSD platform for serodiagnosis. The simple conversion of the cELISA to the MSD platform suggests that many other serodiagnostic tests could readily be converted. Furthermore, the alignment of these results with the multiplex capability of the MSD platform offers the potential of no-wash multiplex assays to screen for several diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681589 | PMC |
http://dx.doi.org/10.1128/CVI.00006-09 | DOI Listing |
EBioMedicine
January 2025
Univ. Grenoble Alpes, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR, Grenoble, 5309, France.
Background: mRNA-based cancer vaccines show promise in triggering antitumour immune responses. To combine them with existing immunotherapies, the intratumoral immune microenvironment needs to be deeply characterised. Here, we test nanostructured lipid carriers (NLCs), the so-called Lipidots®, for delivering unmodified mRNA encoding Ovalbumin (OVA) antigen to elicit specific antitumour responses.
View Article and Find Full Text PDFBioanalysis
January 2025
Bioanalytical Sciences (BAS), Genentech Research and Early Development, South San Francisco, CA, USA.
Background: Technologies such as ELISA, MSD, and Gyrolab have been employed for quantifying protein therapeutics in clinical trials. However, these technologies have limitations with dynamic range often requiring multiple dilution steps, introducing potential errors and variability.
Results/methodology: A pharmacokinetics assay was successfully developed on the NUcleic acid Linked Immuno-Sandwich Assay (NULISA) platform with a concentration dynamic range exceeding 6 logs.
BMJ Open
January 2025
Diabetes Care Unit, Caen University Hospital, Caen cedex 09, France.
Introduction: Glycated haemoglobin (HbA1c) is currently the gold standard for assessing glycaemic control in diabetes, given the established relationship with microvascular and macrovascular complications in this condition. However, HbA1c is affected by non-glycaemic factors, while also failing to provide data on hypoglycaemic exposure and glucose variability, which are associated with adverse vascular outcomes. Continuous glucose monitoring (CGM)-derived glucose metrics provide a more comprehensive assessment of glycaemia, but their role in predicting future vascular complications remains unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Replicate Bioscience Inc, San Diego, CA, USA.
Self-replicating RNA (srRNA) technology, in comparison to mRNA vaccines, has shown dose-sparing by approximately 10-fold and more durable immune responses. However, no improvements are observed in the adverse events profile. Here, we develop an srRNA vaccine platform with optimized non-coding regions and demonstrate immunogenicity and safety in preclinical and clinical development.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Lung cancer is a deadly disease with the highest rates of mortality. Over recent decades, a better understanding of the biological mechanisms implicated in its pathogenesis has led to the development of targeted therapies and immunotherapy, resulting in improvements in patient outcomes. To better understand lung cancer tumor biology and advance towards precision oncology, a comprehensive tumor profile is necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!