Mutations of succinate dehydrogenase (SDH) subunits B, C and D are associated to pheochromocytoma/paraganglioma (PGL) development. The mechanisms linking SDH mutations to tumorigenesis are currently unknown. We report a novel germline missense SDHB mutation (C191Y) in a patient affected by a glomus tumor. The missense mutation hits an amino acid residue conserved from mammals to the yeast Saccharomyces cerevisiae. The pathogenic significance of the human mutation was validated in a yeast model. SDH2(C184Y) mutant allele equivalent to human SDHB(C191Y) did not restore the OXPHOS phenotype of the Deltasdh2 null mutant. In the mutant, SDH activity was also abolished along with a reduction in respiration. Sensitivity to oxidative stress was increased in the mutant, as revealed by reduced growth in the presence of menadione. Remarkably, the frequency of petite colony formation was increased in the mutant yeast strain, indicating an increased mtDNA mutability. Histochemistry demonstrates that SDH activity was selectively absent in the patient tumor tissue. Overall, our results demonstrate that the C191Y SDHB mutation suppresses SDH enzyme activity leading to increased ROS formation and mtDNA mutability in our yeast model. These findings further our understanding of the mechanisms underlying PGL development and point to the yeast model as a valid tool to investigate on the possible pathogenic relevance of SDH novel mutations and/or rare polymorphism.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddp102DOI Listing

Publication Analysis

Top Keywords

yeast model
16
succinate dehydrogenase
8
germline missense
8
missense mutation
8
mutation c191y
8
patient glomus
8
glomus tumor
8
pgl development
8
sdhb mutation
8
sdh activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!