A new amperometric biosensor, based on deposition of glucose oxidase (GOD) onto crystalline gold (Au) nanoparticle modified multiwalled carbon nanotube (MWNT) electrode, is presented. MWNTs have been synthesized by catalytic chemical vapor decomposition of acetylene over rare-earth-based AB2 (DyNi2) alloy hydride catalyst. Purified MWNTs have been decorated with nanocrystalline Au metal clusters using a simple chemical reduction method. The characterization of metal-decorated CNTs has been done using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and energy-dispersive X-ray analysis. Amperometric biosensor fabricated by depositing GOD over Nafion-solubilized Au-MWNT electrode retains its biocatalytic activity and offers fast and sensitive glucose quantification. The performance of the biosensor has been studied using cyclic voltammetry, amperometry, and hydrodynamic voltammetry, and the results have been discussed. The fabricated glucose biosensor exhibits a linear response up to 22 mM glucose and a detection limit of 20 microM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp810235v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!