Single-crystalline copper vanadium oxide nanowires beta'-Cu(x)V(2)O(5) (x approximately 0.60) have been synthesized by the hydrothermal reduction of bulk CuV(2)O(6) using small-molecule aliphatic alcohols as reducing agents. The prepared copper vanadium bronze nanowires are metallic in nature and exhibit aspect ratios as high as 300. The recent discovery of superconductivity and charge disproportionation in bulk beta'-Cu(x)V(2)O(5) has led to renewed interest in these one-dimensional metallic systems. Scaling these systems to nanoscale dimensions offers the potential for further tunability of electronic transport and Li-ion intercalation kinetics. A combination of spectroscopic and electrical measurement methods has been used to provide evidence for the metallic nature and the presence of room-temperature charge disproportionation in these nanowires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic802408c | DOI Listing |
Science
January 2025
Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute of Building Materials Research, RWTH Aachen University, Schinkelstraße 3, 52062, Aachen, Germany. Electronic address:
Many construction products are in contact with, e.g., rain and seepage water during their service life.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
Compared with widely established monovalent-ion batteries, aqueous multivalent-ion batteries promise higher capacity release by achieving multiple electron-transfer events per ion intercalation in the host material. Despite plausibility, this high-capacity dream is untenable with the total tolerable redox charge-transfer limit of the host material for all carrier species equally, which is historically assumed to depend on the material rather than the guest carrier itself, and the kinetic hysteresis induced by larger charge/radius ratios induced kinetic hysteresis further enlarges the divide. Herein, we report that copper carrier redox in vanadium sulfide (VS) exceeds the intrinsic intercalation capacity boundary, with the highest capacity release as 675 mAh g at 0.
View Article and Find Full Text PDFEnviron Res
December 2024
Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530006, China. Electronic address:
Water pollution caused by antibiotics is considered a major and growing issue. To address this challenge, high-performance copper vanadate-based biochar (CuVO/BC) nanocomposite photocatalysts were prepared to develop an efficient visible light-driven photocatalytic system for the remediation of tetracycline (TC) contaminated water. The effects of photocatalyst mass, solution pH, pollutant concentration, and common anions on the TC degradation were investigated in detail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!