Chitosan-coated wires: conferring electrical properties to chitosan fibers.

Biomacromolecules

Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, Maryland 20742, USA.

Published: April 2009

There is considerable interest in creating convenient biosensing platforms that couple the capabilities of biology for selective detection with the power of electronics for signal transduction. Here, the capabilities of a polymeric fiber for facile biofunctionalization is coupled with the signal transduction capabilities of a conducting wire to generate a hybrid platform that can be viewed as either a biofunctionalized wire or a conducting fiber. Integral to this hybrid platform is the interface material chitosan that enables simple electrical signals to be employed to biofunctionalize conducting wires. Specifically, we use cathodic signals to direct chitosan to electrodeposit onto gold wires and anodic signals to conjugate proteins (e.g., for biosensing) to the chitosan-coated wire. In addition, the chitosan-coating is permeable to small molecules, which allows for the electrical detection of electrochemically active compounds that are either present in the external environment or generated by a biofunctionalized chitosan coating. The capabilities for biofunctionalization and transduction are demonstrated for the detection of glucose by chitosan-coated wires functionalized with the enzyme glucose oxidase. Chitosan-coated wires (or alternatively conducting chitosan fibers) are a simple platform that may permit multiplexed biosensing outside the laboratory.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm801364hDOI Listing

Publication Analysis

Top Keywords

chitosan-coated wires
12
chitosan fibers
8
signal transduction
8
transduction capabilities
8
hybrid platform
8
chitosan
5
chitosan-coated
4
wires conferring
4
conferring electrical
4
electrical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!