Factors controlling hole injection in single conjugated polymer molecules.

J Phys Chem A

Center for Nano and Molecular Science and Technology, University of Texas, Austin, Texas 78712, USA.

Published: April 2009

New insights on the molecular level details of the recently reported light-assisted injection of positive charge into single conjugated polymer chains are reported. Extensive new fluorescence-voltage single molecule spectroscopy (FV-SMS) measurements were performed on single chains of the archetypical conjugated polymer MEH-PPV embedded in a capacitor device to complement previous studies of the influence of the bias scan rate and optical excitation intensity. The use of a vacuum microscope allowed for the precise control of the device atmosphere, demonstrating the influence of triplet states in the MEH-PPV on the FV-SMS modulation. For identical device conditions, little variation was observed in the rate and yield of charging from molecule to molecule. Through the use of thicker supporting matrices and insulating polymer "blocking layers", it was determined that good electrical contact between the hole transport layers and the single molecules was necessary for charge injection. The results demonstrate the complexity of charge transfer processes at the interface of organic semiconductors and highlight the ability of single molecule methods to advance the understanding of such processes at the nanoscale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp900562wDOI Listing

Publication Analysis

Top Keywords

conjugated polymer
12
single conjugated
8
single molecule
8
single
6
factors controlling
4
controlling hole
4
hole injection
4
injection single
4
polymer
4
polymer molecules
4

Similar Publications

In the manipulation of π-conjugated organic polymer, strategic alterations to the polymerization cascade facilitate the integration of donor (D) and acceptor (A) entities within the polymer's backbone. Such control is instrumental in broadening the photoresponse spectrum, enhancing photoinduced charge separation, and augmenting the efficiency of charge transfer processes. The oxygen-containing amino group (-ONH) was innovatively grafted into the polymerization process of the triazine-heptazine ring skeleton, and the -ONH was used as a capping agent to change the chain bonding in the polymerization process, thus a new intramolecular D-A structure was successfully constructed.

View Article and Find Full Text PDF

A PDMS/chitosan/MPMs composite film based on multi-field coupling enhancement for African swine fever virus P72 protein detection.

Mikrochim Acta

January 2025

Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.

African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.

View Article and Find Full Text PDF

Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease.

ACS Appl Mater Interfaces

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.

View Article and Find Full Text PDF

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!