The heterogeneity in composition and interaction within the cellular membrane translates into a wide range of diffusion coefficients of its constituents. Therefore, several complementary microfluorimetric techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP) and single-particle tracking (SPT) have to be applied to explore the dynamics of membrane components. The recently introduced raster image correlation spectroscopy (RICS) offers a much wider dynamic range than each of these methods separately and allows for spatial mapping of the dynamic properties. RICS is implemented on a confocal laser-scanning microscope (CLSM), and the wide dynamic range is achieved by exploiting the inherent time information carried by the scanning laser beam in the generation of the confocal images. The original introduction of RICS used two-photon excitation and photon counting detection. However, most CLSM systems are based on one-photon excitation with analog detection. Here we report on the performance of such a commercial CLSM (Zeiss LSM 510 META) in the study of the diffusion of the fluorescent lipid analog 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indodicarbocyanine perchlorate (DiI-C(18)(5)) both in giant unilamellar vesicles and in the plasma membrane of living oligodendrocytes, i.e., the myelin-producing cells of the central nervous system. It is shown that RICS on a commercial CLSM with analog detection allows for reliable results in the study of membrane diffusion by removal of unwanted correlations introduced by the analog detection system. The results obtained compare well with those collected by FRAP and FCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728053PMC
http://dx.doi.org/10.1021/la8040538DOI Listing

Publication Analysis

Top Keywords

analog detection
16
correlation spectroscopy
12
raster image
8
image correlation
8
spectroscopy rics
8
rics commercial
8
laser-scanning microscope
8
dynamic range
8
commercial clsm
8
rics
5

Similar Publications

The reaction-based probe perylene diimide-hydroxyphenyl benzothiazole (PR) can be used for the detection and discrimination of HS, DTT and Cys in 20% HEPES buffer-DMSO and DMSO. The HS induced radical anion formation of PR in 20% HEPES buffer and thiolysis of the ether bond of PR in DMSO. However, the addition of DTT showed only a decrease in the absorbance intensity and Cys showed insignificant behaviour towards PR in DMSO.

View Article and Find Full Text PDF

Fentanyl and its derivatives (nonpharmaceutical fentanyl, NPFs) represent the largest group among synthetic opioids. Fentanyl-related deaths and fatalities from tampering with pharmaceutical products have been reported. Furthermore, in the United States, adulterants such as xylazine and other substances, including the nitazenes class of opioids, have been found in an increasing number of unintentional overdose deaths, drug seizures, and reports of use by recreational drug users.

View Article and Find Full Text PDF

Background: The parathyroid calcium-sensing receptor (CASR) controls the release of parathyroid hormone (PTH) in response to changes in serum calcium levels. Activation of the renal CASR increases urinary calcium excretion and is particularly important when CASR-dependent reductions in PTH fail to lower serum calcium. However, the role of the renal CASR in protecting against hypercalcemia and the direct effects of chronic CASR activation on tubular calcium handling remains to be fully elucidated.

View Article and Find Full Text PDF

Facile synthesis of plasmonic BP@Au nanomatrix for sensitive detection of irinotecan and its active SN-38 metabolite via laser desorption/ionization mass spectrometry.

Mikrochim Acta

January 2025

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China.

A new methodology is presented for the rapid, specific, and sensitive detection of irinotecan (CPT-11), a chemotherapeutic agent utilized in the treatment of cancer, along with its metabolically active derivative, SN-38, via laser desorption/ionization mass spectrometry (LDI MS). The method includes the detection of camptothecin (CPT), which can be utilized as an internal standard for the quantitative assessment of both CPT-11 and SN-38 in mouse serum. The approach utilizes a plasmonic two-dimensional (2D) black phosphorus nanosheet (BPN)-gold nanomatrix (BP@Au) in LDI MS.

View Article and Find Full Text PDF

Voxel-based morphometry (VBM) of T1-weighted (T1-w) magnetic resonance imaging (MRI) is primarily used to study the association of brain structure with cognitive functions. However, in theory, T2-weighted (T2-w) MRI could also be used in VBM studies because of its sensitivity to pathology and tissue changes. We aimed to compare the T1-w and T2-w images to study brain structures in association with cognitive abilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!