The phytoremediation of recalcitrant metals such as lead and uranium rely on soil amendments to enhance metal availability within the rhizosphere. Because these amendments may persist in soils, agents that not only biodegrade rapidly but also are effective in triggering metal uptake in plants are needed for metals phytoextraction to be considered as an accepted practice. In this study, several biodegradable organic acids and chelating agents were assessed to determine if these amendments can be used in an effective manner, and if their activity and use is consistent with a proposed class of soil amendments for phytoextraction, here termed transient phytoextraction agents (TPAs). A TPA is proposed as an agent that would exhibit both effectiveness in triggering plant accumulation of the targeted metal while minimizing the risk of migration through rapid degradation or inactivation of the soluble complex. Eleven candidate TPAs (acetic acid, ascorbic acid, citric acid, malic acid, oxalic acid, succinic acid, ethylenediaminedisuccinic acid, dicarboxymethylglutamic acid, nitrilotriacetic acid, BayPure CX 100, and the siderophore desferrioxamine B) were tested in batch studies to evaluate their complexation behavior using contaminated soils, with uranium and lead as the target metals. A growth chamber study was then conducted with Brassica juncea (Indian mustard), Helianthus annuus (sunflower), and Festuca arundinacea (tall fescue) grown in a lead-contaminated soil that was treated with the candidate TPAs to assess phytoextraction effectiveness. For the soils tested, citric acid, oxalic acid, and succinic acid were found to be effective complexing agents for uranium phytoextraction, whereas Baypure CX 100 and citric acid exhibited effectiveness for lead phytoextraction.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226510802100564DOI Listing

Publication Analysis

Top Keywords

acid
13
citric acid
12
transient phytoextraction
8
phytoextraction agents
8
recalcitrant metals
8
soil amendments
8
candidate tpas
8
acid oxalic
8
oxalic acid
8
acid succinic
8

Similar Publications

Directed evolution of antimicrobial peptides using multi-objective zeroth-order optimization.

Brief Bioinform

November 2024

School of Computer Science and Technology, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China.

Antimicrobial peptides (AMPs) emerge as a type of promising therapeutic compounds that exhibit broad spectrum antimicrobial activity with high specificity and good tolerability. Natural AMPs usually need further rational design for improving antimicrobial activity and decreasing toxicity to human cells. Although several algorithms have been developed to optimize AMPs with desired properties, they explored the variations of AMPs in a discrete amino acid sequence space, usually suffering from low efficiency, lack diversity, and local optimum.

View Article and Find Full Text PDF

The Use of Omics in Untangling the Effect of Lifestyle Factors in Pregnancy and Gestational Diabetes: A Systematic Review.

Diabetes Metab Res Rev

January 2025

Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.

Aim: To synthesise the evidence from clinical trials and observational studies using omics techniques to investigate the impact of diet and lifestyle factors on metabolite profile in pregnancy, and in the prevention and management of gestational diabetes mellitus (GDM).

Materials And Methods: A systematic literature search was performed using PubMed, Ovid, CINAHL, and Web of Science databases in October 2023 and updated in September 2024. Inclusion criteria were randomised controlled trials (RCT) or non-RCTs in pregnant women with or without GDM, that measured diet and lifestyle factors, and which applied post-transcriptional omics approaches.

View Article and Find Full Text PDF

Evaluation of Enrichment Approaches for the Study of the Viromes in Mollusk Species.

Food Environ Virol

January 2025

Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.

Invasive alien species such as freshwater snails have significantly affected the food, environment, and the health of humans and animals, which have unfortunately received insufficient attention. To facilitate the study of viromes in snail species, we compared the enrichment effect of cesium chloride (CsCl) and sucrose density gradient ultracentrifugations in the recovery of diverse viruses in Pomacea canaliculata and Achatina fulica. First, we showed that CsCl-based ultracentrifugation enriched more virus contigs and reduced the nucleic acid background of the Pomacea canaliculata and was thus beneficial for virus recovery.

View Article and Find Full Text PDF

The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.

View Article and Find Full Text PDF

Synthetic biology meets Aspergillus: engineering strategies for next-generation organic acid production.

World J Microbiol Biotechnol

January 2025

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China.

Organic acids constitute a vital category of chemical raw materials. They have extensive applications in industries such as polymers, food, and pharmaceuticals. Currently, industrial production predominantly relies on microbial fermentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!