Bioremediation potential of Chlorella: spectroscopic, kinetics, and SEM studies.

Int J Phytoremediation

Department of Chemistry, Sardar Patel University, Gujarat, India.

Published: June 2009

A dead dried alga, Chlorella sp., was used for the uptake of Cr+3, Cr2O7(-2), Cu+2, and Ni+2 from the aqueous solutions of these metal ions. The equilibrium data were fitted using the Langmuir and Freundlich isotherm model and the maximum uptakes for Cr+3, Cr2O7(-2), Ni+2, and Cu+2 were 98, 104, 108, and 183 mg/g, respectively. The Freundlich model, in comparison to the Langmuir model, better represented the sorption process. The kinetics of metal ions uptake by Chlorella sp. was best described by a pseudo-second order rate equation. Infrared spectroscopic data were employed to identify the site(s) of bonding in Chlorella sp. A scanning electron microscopic (SEM) study of pure dead Chlorella sp. and the species treated with different metal ions provided an idea of the extent of metal uptake by this species. The dead Chlorella sp took up maximum Cu(II). The size of the cell of the metal-treated Chlorella sp. obtained from SEM data is in agreement with the extent of metal uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226510802096028DOI Listing

Publication Analysis

Top Keywords

metal ions
12
cr+3 cr2o7-2
8
dead chlorella
8
extent metal
8
metal uptake
8
chlorella
7
metal
5
bioremediation potential
4
potential chlorella
4
chlorella spectroscopic
4

Similar Publications

Metals in Motion: Understanding Labile Metal Pools in Bacteria.

Biochemistry

January 2025

Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States.

Metal ions are essential for all life. In microbial cells, potassium (K) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor.

View Article and Find Full Text PDF

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.

View Article and Find Full Text PDF

In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Design and synthesis of a new highly efficient adjustable Ln-MOF for fluorescence sensing and information encryption.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.

Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!