Demyelination of the cerebellum is a well-known phenomenon in human multiple sclerosis (MS). Concordantly, patients with MS frequently developed symptoms deriving from cerebellar lesions, i.e., dysmetria leading to hand dexterity impairment. Important advances in MS research have been made as a direct or indirect consequence of the establishment of adequate animal models. In this study, we used the cuprizone mouse model to investigate cerebellar demyelination in young adult male mice. The myelin status was analyzed by immunohistochemistry for proteolipoprotein and electron microscopy. The expression and presence of oligodendrocyte, astroglial, and microglia markers were supplementary studied. Cuprizone intoxication induced an almost complete demyelination of cerebellar nuclei. Cerebellar cortex regions were not (cortical gray matter) or only marginally (cortical white matter) affected. In addition, the affected areas displayed hypertrophic and hyperplastic astrocytosis accompanied by microglia or macrophage invasion. We conclude that cuprizone-induced demyelination pictures cerebellar deep gray matter involvement but not cerebellar cortex pathology as described for human MS. Behavioral changes after cuprizone described for this animal model may not only result from effects on commissural fiber tracts but also can arise from cerebellar demyelination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12311-009-0099-3 | DOI Listing |
Brain Commun
January 2025
Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines.
View Article and Find Full Text PDFRadiol Bras
January 2025
Faculdade de Ciências Médicas da Universidade Estadual de Campinas (FCM-Unicamp), Campinas, SP, Brazil.
The middle cerebellar peduncle (MCP) is the largest afferent system of the cerebellum and consists of fibres from the cortico-ponto-cerebellar tract. Specifically, several relevant diseases can present with hyperintensity in the MCP on T2-weighted/fluid-attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging sequences, including multiple sclerosis; acute disseminated encephalomyelitis; neuromyelitis optica spectrum disorder; progressive multifocal leucoencephalopathy; hepatic encephalopathy; osmotic demyelination syndrome; multiple system atrophy; fragile X-associated tremor/ataxia syndrome; megalencephalic leucoencephalopathy with subcortical cysts; spinocerebellar ataxias; hemi-pontine infarct with trans-axonal degeneration; and diffuse midline glioma with the histone H3K27M mutation. The aim of this pictorial review is to discuss the imaging findings that are relevant for the differential diagnosis of diseases presenting with MCP hyperintensity on T2/FLAIR sequences.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Department of Neurology, Mayo Clinic, Rochester, MN.
Background And Objectives: While it is well characterized in adults, little is known about the clinical features of neurofascin 155-IgG4 autoimmune nodopathy (NF155-IgG4 AN) in the pediatric population. In this study, we aimed to describe the clinical features and treatment outcomes in children diagnosed with neurofascin 155-IgG4 autoimmune nodopathy (NF155-IgG4 AN).
Methods: Pediatric and adult patients with NF155-IgG4 AN were identified retrospectively through the Mayo Clinic Neuroimmunology Laboratory database.
J Neurol
January 2025
Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany.
Background: BDNF has increasingly gained attention as a key molecule controlling remyelination with a prominent role in neuroplasticity and neuroprotection. Still, it remains unclear how BDNF relates to clinicoradiological characteristics particularly at the early stage of the disease where precise prognosis for the further MS course is crucial.
Methods: BDNF, NfL and GFAP concentrations in serum and CSF were assessed in 106 treatment naïve patients with MS (pwMS) as well as 73 patients with other inflammatory/non-inflammatory neurological or somatoform disorders using a single molecule array HD-1 analyser.
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!