Duplication within the chromosome 17p11.2 (CMT1Adup), peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ) and gap junction beta1-protein (GJB1) gene mutations are frequent causes of the Charcot-Marie-Tooth disease (CMT). A large number of mutations in these genes are listed in databases. Sequence variants identified in patients are frequently reported as mutations without further evaluation. We analyzed 250 consecutively recruited unrelated Austrian CMT patients for CMT1Adup by microsatellite marker typing, real-time PCR or MLPA, and found 79 duplications (31.6%). The coding regions of the PMP22, MPZ and GJB1 genes were analyzed by direct sequencing in the remaining patients; 28 patients showed mutations, 14 of which were novel. We scored the pathogenicity of novel missense mutations by segregation studies and by their exclusion in control samples. Our comprehensive literature study found that up to 60% of the reported mutations in these genes had not been evaluated regarding their pathogenicity, and the PANTHER bioinformatics tool was used to score novel and published missense variants. The PANTHER program scored known polymorphisms as such, but scored approximately 82-88% only of the published and novel mutations as most likely deleterious. Mutations associated with axonal CMT were less likely to be classified as deleterious, and the PMP22 S72L mutation repeatedly associated with severe CMT was classified as a polymorphism using default parameters. Our data suggest that this in silico analysis tool could be useful for assessing the functional impact of DNA variations only as a complementary approach. The CMT1Adup, GJB1, MPZ and PMP22 mutation frequencies were in the range of those described in other CMT patient collectives with different ethnical backgrounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2986587PMC
http://dx.doi.org/10.1038/ejhg.2009.29DOI Listing

Publication Analysis

Top Keywords

mutations
9
silico analysis
8
gjb1 mpz
8
mpz pmp22
8
gene mutations
8
myelin protein
8
mutations genes
8
reported mutations
8
cmt classified
8
novel
5

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.

View Article and Find Full Text PDF

Multi-insertion/deletion polymorphisms (Multi-InDels), as the novel genetic markers, show great potential in forensic research. Whereas, forensic researchers mainly focus on the multi-InDels on the autosomes, which can provide relatively limited information in some complex paternity cases. In this study, a novel X chromosomal multi-InDel multiplex amplification system was designed, containing 22 multi-InDels and one STR locus on the X chromosome.

View Article and Find Full Text PDF

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!