A constitutively active G protein-coupled receptor (GPCR) encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) (KSHV) is expressed in endothelial (spindle) cells of Kaposi's sarcoma lesions. In this study, we report novel effects of basal signaling by this receptor and of inverse agonist chemokines on migration of KSHV-GPCR-expressing mouse lung endothelial cells. We show that basal signaling by KSHV-GPCR inhibits migration of endothelial cells in two systems, movement through porous filters and in vitro wound closure. Naturally occurring chemokines, interferon gamma-inducible protein-10 and stromal-derived factor-1, which act as inverse agonists at KSHV-GPCR, abrogate the inhibition of migration and stimulate directed migration (or chemotaxis) of these cells. Thus, the expression of KSHV-GPCR may allow infected endothelial cells in situ to remain in a localized environment or to directionally migrate along a gradient of specific chemokines that are inverse agonists at KSHV-GPCR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683784PMC
http://dx.doi.org/10.1124/jpet.108.147686DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
inverse agonists
12
kaposi's sarcoma-associated
8
basal signaling
8
agonists kshv-gpcr
8
cells
6
endothelial
5
migration
5
sarcoma-associated herpesvirus-g
4
herpesvirus-g protein-coupled
4

Similar Publications

Protocol to generate a 3D atherogenesis-on-chip model for studying endothelial-macrophage crosstalk in atherogenesis.

STAR Protoc

January 2025

Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:

The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.

View Article and Find Full Text PDF

Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.

View Article and Find Full Text PDF

Protocol for differentiating hematopoietic progenitor cells from human pluripotent stem cells in chemically defined monolayer culture.

STAR Protoc

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China. Electronic address:

Human pluripotent stem cells (hPSCs) provide a powerful platform for generating hematopoietic progenitor cells (HPCs) and investigating hematopoietic development. Here, we present a protocol for maintaining hPSCs and inducing their differentiation into HPCs through the endothelial-to-hematopoietic transition (EHT) on vitronectin-coated plates. We outline steps for evaluating the efficiency of HPC generation and assessing their potential to differentiate into various hematopoietic lineages.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!