The three key players in the exocytotic release of neurotransmitters from synaptic vesicles are the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin 2, syntaxin 1a, and SNAP-25. Their assembly into a tight four-helix bundle complex is thought to pull the two membranes into close proximity. It is debated, however, whether the energy generated suffices for membrane fusion. Here, we have determined the thermodynamic properties of the individual SNARE assembly steps by isothermal titration calorimetry. We found extremely large favorable enthalpy changes counterbalanced by positive entropy changes, reflecting the major conformational changes upon assembly. To circumvent the fact that ternary complex formation is essentially irreversible, we used a stabilized syntaxin-SNAP-25 heterodimer to study synaptobrevin binding. This strategy revealed that the N-terminal synaptobrevin coil binds reversibly with nanomolar affinity. This suggests that individual, membrane-bridging SNARE complexes can provide much less pulling force than previously claimed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676046 | PMC |
http://dx.doi.org/10.1074/jbc.M900703200 | DOI Listing |
Gen Thorac Cardiovasc Surg Cases
January 2025
Department of Thoracic and Cardiovascular Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan.
Patients with coronary artery disease undergoing trans-catheter aortic valve implantation (TAVI) often receive TAVI alone. However, in cases of severe coronary lesions or anticipated difficulty in coronary access post-TAVI, percutaneous coronary intervention or coronary artery bypass grafting may be necessary. We performed simultaneous gastroepiploic artery to posterior descending artery bypass and TAVI in two patients with severe calcification of the right coronary artery ostium which is unsuitable for percutaneous intervention.
View Article and Find Full Text PDFBMC Genomics
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
Background: Glycyrrhiza glabra, which is widely used in medicine and therapy, is known as the 'king of traditional Chinese medicine'. In this study, we successfully assembled and annotated the mitochondrial and chloroplast genomes of G. glabra via high-throughput sequencing technology, combining the advantages of short-read (Illumina) and long-read (Oxford Nanopore) sequencing.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China.
Background: Stemona tuberosa, a vital species in traditional Chinese medicine, has been extensively cultivated and utilized within its natural distribution over the past decades. While the chloroplast genome of S. tuberosa has been characterized, its mitochondrial genome (mitogenome) remains unexplored.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China.
Background: Cutibacterium acnes is one of the most commonly found microbes in breast milk. However, little is known about the genomic characteristics of C. acnes isolated from breast milk.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Signalling and Structural Biology Laboratory, Francis Crick Institute, London, UK.
The mutually antagonistic relationship of atypical protein kinase C (aPKC) and partitioning-defective protein 6 (Par6) with the substrate lethal (2) giant larvae (Lgl) is essential for regulating polarity across many cell types. Although aPKC-Par6 phosphorylates Lgl at three serine sites to exclude it from the apical domain, aPKC-Par6 and Lgl paradoxically form a stable kinase-substrate complex, with conflicting roles proposed for Par6. We report the structure of human aPKCι-Par6α bound to full-length Llgl1, captured through an aPKCι docking site and a Par6 contact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!