Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel preferential image segmentation method is proposed that performs image segmentation and object recognition using mathematical morphologies. The method preferentially segments objects that have intensities and boundaries similar to those of objects in a database of prior images. A tree of shapes is utilized to represent the content distributions in images, and curve matching is applied to compare the boundaries. The algorithm is invariant to contrast change and similarity transformations of translation, rotation and scale. A performance evaluation of the proposed method using a large image dataset is provided. Experimental results show that the proposed approach is promising for applications such as object segmentation and video tracking with cluttered backgrounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2008.2010202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!