The enigma of the major repeat sequence of Candida albicans.

Future Microbiol

Research Center for Pathogenic Fungi & Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chiba 260-8673, Japan.

Published: March 2009

The major repeat sequence, discovered in the yeast Candida albicans, is a stretch of repeated DNA that occurs nine times in the haploid genome of this opportunistic fungal pathogen and probably a similar number of times in the genome of Candida dubliniensis. In C. albicans it constitutes 1-2% of the genome. Its occurrence is limited to those two species. Despite its major role as a genomic feature, its function, mode of expansion in size due to duplication of internal subunits, and its origin and mechanism of distribution throughout the genome are not understood, although it is associated with chromosome translocations, chromosome length polymorphisms and regulation of the yeast-hypha dimorphic transition. The polymorphism of the major repeat sequence has been exploited in epidemiology and taxonomic studies. This review describes its sequence, occurrence, use in epidemiology and examines the evidence for its role in chromosome dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.2217/17460913.4.2.171DOI Listing

Publication Analysis

Top Keywords

major repeat
12
repeat sequence
12
candida albicans
8
enigma major
4
sequence
4
sequence candida
4
albicans major
4
sequence discovered
4
discovered yeast
4
yeast candida
4

Similar Publications

A novel model of central precocious puberty disease: Paternal MKRN3 gene-modified rabbit.

Animal Model Exp Med

January 2025

Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Background: Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited.

Methods: Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology.

View Article and Find Full Text PDF

Background: Worldwide, there has been a worrying increase in the prevalence of syphilis. Blood banks have a major role in monitoring the trend of these events, despite the bias due to the altruistic donation strategy.

Objectives: To determine the seroprevalence of syphilis and analyse its association with defined risk factors among blood donors at the regional blood center at Hospital Prof.

View Article and Find Full Text PDF

Proteomic Variation in the Oral Secretion of Spodoptera exigua and Spodoptera littoralis Larvae in Response to Different food Sources.

J Chem Ecol

January 2025

Biotechnological Control of Pests Laboratory, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, 46100, Spain.

The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response.

View Article and Find Full Text PDF

Background: Drought is a major limiting factor for plant survival and crop productivity. Stylosanthes angustifolia, a pioneer plant, exhibits remarkable drought tolerance, yet the molecular mechanisms driving its drought resistance remain largely unexplored.

Results: We present a chromosome-scale reference genome of S.

View Article and Find Full Text PDF

NOD-like receptor family CARD domain-containing 5 (NLRC5) is a major transcriptional coactivator of MHC class I genes. NLRC5 is the largest member of the NLR family and contains three domains: an untypical caspase recruitment domain (uCARD), a central nucleotide-binding and oligomerization domain (NOD or NACHT), and a leucine-rich repeat (LRR) domain. The functional variability of NLRC5 has been attributed to its different domain interactions with specific ligands in different cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!