The response of magnetic vortex cores to subnanosecond in-plane magnetic field pulses was studied by time-resolved x-ray microscopy. Vortex core reversal was observed and the switching events were located in space and time. This revealed a mechanism of coherent excitation by the leading and trailing edges of the pulse, lowering the field amplitude required for switching. The mechanism was confirmed by micromagnetic simulations and can be understood in terms of gyration around the vortex equilibrium positions, displaced by the applied field.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.102.077201DOI Listing

Publication Analysis

Top Keywords

vortex core
8
coherent excitation
8
in-plane magnetic
8
magnetic field
8
field pulses
8
vortex
4
core switching
4
switching coherent
4
excitation single
4
single in-plane
4

Similar Publications

This paper introduces an innovative technique for extracting pesticides from herbal infusions using a core-shell magnetic adsorbent (i.e., Cu-BTC@FeO) where achieving a notable enrichment factor for the target pesticides by coupling with a dispersive liquid-liquid microextraction method.

View Article and Find Full Text PDF

Topologically Protected Vortex Knots in an Experimentally Realizable System.

Phys Rev Lett

December 2024

QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.

Ordered media often support vortex structures with intriguing topological properties. Here, we investigate non-Abelian vortices in tetrahedral order using the mathematical formalism of colored links. Due to the generality of our methods, the results apply to all physical systems governed by tetrahedral order, such as the cyclic phase of spin-2 Bose-Einstein condensates and the tetrahedratic phase of bent-core nematic liquid crystals.

View Article and Find Full Text PDF

Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).

View Article and Find Full Text PDF

Topological Phononic Fiber of Second Spin-Chern Number.

Phys Rev Lett

November 2024

National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China.

The discovery of quantum spin Hall effect characterized by the first spin-Chern numbers in 2D systems has significantly advanced topological materials. To explore its 4D counterpart is of fundamental importance, but so far remains elusive in experiments. Here, we realize a topological phononic fiber protected by the second spin-Chern number in a 4D manifold, using a 3D geometric structure combined with a 1D rotational parameter space.

View Article and Find Full Text PDF

The existence of thresholdless vortex solitons trapped at the core of disclination lattices that realize higher-order topological insulators is reported. The study demonstrates the interplay between nonlinearity and higher-order topology in these systems, as the vortex state in the disclination lattice bifurcates from its linear topological counterpart, while the position of its propagation constant within the bandgap and localization can be controlled by its power. It is shown that vortex solitons are characterized by strong field confinement at the disclination core due to their topological nature, leading to enhanced stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!