Membrane tension lowering induced by protein activity.

Phys Rev Lett

Institut Curie, Centre de Recherche; CNRS, UMR 168; Université Pierre et Marie Curie, Paris, F-75248 France.

Published: January 2009

Using videomicroscopy we present measurements of the fluctuation spectrum of giant vesicles containing bacteriorhodopsin pumps. When the pumps are activated, we observe a significant increase of the fluctuations in the low wave vector region, which we interpret as due to a lowering of the effective tension of the membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.102.038102DOI Listing

Publication Analysis

Top Keywords

membrane tension
4
tension lowering
4
lowering induced
4
induced protein
4
protein activity
4
activity videomicroscopy
4
videomicroscopy measurements
4
measurements fluctuation
4
fluctuation spectrum
4
spectrum giant
4

Similar Publications

Physicochemical profiles of mixed ruminal microbes in response to surface tension and specific surface area.

Front Vet Sci

January 2025

Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.

Introduction: In ruminants, a symbiotic rumen microbiota is responsible for supporting the digestion of dietary fiber and contributes to health traits closely associated with meat and milk quality. A holistic view of the physicochemical profiles of mixed rumen microbiota (MRM) is not well-illustrated.

Methods: The experiment was performed with a 3 × 4 factorial arrangement of the specific surface area (SSA: 3.

View Article and Find Full Text PDF

For gastric leiomyomas measuring ≥5 cm, endoscopic resection is necessary. The larger size of these tumors significantly impairs the resection field of view, increasing the risk of intraoperative bleeding and perforation and potentially leading to incomplete tumor removal. The combination of dental floss and tissue clip traction techniques is commonly used for resecting mucosal lesions but is rarely reported for submucosal tumors.

View Article and Find Full Text PDF

Adrenergic stimulation induces contractions in the corpus cavernosum smooth muscle (CCSM) that are important in maintaining penile flaccidity. The aim of this study was to investigate the role of K7 channels in regulating contractions and their underlying Ca signals in mouse CCSM. Quantitative PCR revealed transcriptional expression of KCNQ1 and KCNQ3-5 genes in whole CCSM, with KCNQ5 as the most highly transcribed K7 encoding gene.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

Drug Delivery Applications of Hydrophobic Deep Eutectic Solvent-in-Water Nanoemulsions: A Comparative Analysis of Ultrasound Emulsification and Membrane-Assisted Nanoemulsification.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering and Environmental Technology, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D, 50018 Zaragoza, Spain.

The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!