Threshold for chaos and thermalization in the one-dimensional mean-field bose-hubbard model.

Phys Rev Lett

Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA.

Published: January 2009

We study the threshold for chaos and its relation to thermalization in the 1D mean-field Bose-Hubbard model, which, in particular, describes atoms in optical lattices. We identify the threshold for chaos, which is finite in the thermodynamic limit, and show that it is indeed a precursor of thermalization. Far above the threshold, the state of the system after relaxation is governed by the usual laws of statistical mechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.102.025302DOI Listing

Publication Analysis

Top Keywords

threshold chaos
12
mean-field bose-hubbard
8
bose-hubbard model
8
threshold
4
chaos thermalization
4
thermalization one-dimensional
4
one-dimensional mean-field
4
model study
4
study threshold
4
chaos relation
4

Similar Publications

The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently.

View Article and Find Full Text PDF

The existing research studies on the basin stability of stochastic systems typically focus on smooth systems, or the attraction basins are pre-defined as easily solvable regular basins. In this work, we introduce a new framework to discover the basin stability from state time series in the non-smooth stochastic competition system under threshold control. Specifically, we approximate the drift and diffusion with threshold control parameters by an extended Kramers-Moyal expansion with initial state partitioning.

View Article and Find Full Text PDF

The impact of resource allocation on the dynamics of epidemic spreading is an important topic. In real-life scenarios, individuals usually prioritize their own safety, and this self-protection consciousness will lead to delays in resource allocation. However, there is a lack of systematic research on the impact of resource allocation delay on epidemic spreading.

View Article and Find Full Text PDF

The evolution of cooperation in spatial public goods game with tolerant punishment based on reputation threshold.

Chaos

January 2025

Department of Computer Science and A.I. Andalusian Research Institute DaSCI "Data Science and Computational Intelligence, " University of Granada, 18071 Granada, Spain.

Reputation and punishment are significant guidelines for regulating individual behavior in human society, and those with a good reputation are more likely to be imitated by others. In addition, society imposes varying degrees of punishment for behaviors that harm the interests of groups with different reputations. However, conventional pairwise interaction rules and the punishment mechanism overlook this aspect.

View Article and Find Full Text PDF

Directed recurrence networks for the analysis of nonlinear and complex dynamical systems.

Chaos

January 2025

Department of Management Science and Technology, Tohoku University, Sendai 980-8579, Japan.

Complex network approaches have been emerging as an analysis tool for dynamical systems. Different reconstruction methods from time series have been shown to reveal complicated behaviors that can be quantified from the network's topology. Directed recurrence networks have recently been suggested as one such method, complementing the already successful recurrence networks and expanding the applications of recurrence analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!