A 60 T magnetic field suppresses the superconducting transition temperature T_{c} in La_{2-p}Sr_{p}CuO_{4} to reveal a Hall number anomaly, which develops only at temperatures below zero-field T_{c} and peaks at the exact location of p that maximizes T_{c}. The anomaly bears a striking resemblance to observations in Bi_{2}Sr_{2-x}La_{x}CuO_{6+delta}, suggesting a normal-state phenomenology common to the cuprates that underlies the high-temperature superconducting phase. The peak is ascribed to a Fermi surface reconstruction at a quantum phase transition near optimum doping that is coincident with the collapse of the pseudogap state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.102.017004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!