Congestion phenomena on complex networks.

Phys Rev E Stat Nonlin Soft Matter Phys

International School for Advanced Studies SISSA and INFN, via Beirut 2-4, 34014 Trieste, Italy.

Published: January 2009

We define a minimal model of traffic flows in complex networks in order to study the trade-off between topological-based and traffic-based routing strategies. The resulting collective behavior is obtained analytically for an ensemble of uncorrelated networks and summarized in a rich phase diagram presenting second-order as well as first-order phase transitions between a free-flow phase and a congested phase. We find that traffic control improves global performance, enlarging the free-flow region in parameter space only in heterogeneous networks. Traffic control introduces nonlinear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner. The model also reproduces the crossover in the scaling of traffic fluctuations empirically observed on the Internet.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.79.015101DOI Listing

Publication Analysis

Top Keywords

complex networks
8
congested phase
8
traffic control
8
phase
5
congestion phenomena
4
phenomena complex
4
networks
4
networks define
4
define minimal
4
minimal model
4

Similar Publications

Patients in need of a kidney transplant have the option of receiving a kidney from a living donor or a deceased donor. Patients in the United States who do not have an available living donor typically wait on the deceased donor waiting list for an average of three to five years, although some patients may wait longer. The waiting list is very complex and intended to allocate kidneys in a fair and equitable manner.

View Article and Find Full Text PDF

The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.

View Article and Find Full Text PDF

Non-canonical Roles of Complement in the CNS: From Synaptic Organizer to Presynaptic Modulator of Glutamate Transmission.

Curr Neuropharmacol

January 2025

Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.

The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.

View Article and Find Full Text PDF

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!