Strong violation of critical phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel model under bond randomness.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, GR 15784 Zografos, Athens, Greece.

Published: January 2009

We study the pure and random-bond versions of the square lattice ferromagnetic Blume-Capel model, in both the first-order and second-order phase transition regimes of the pure model. Phase transition temperatures, thermal and magnetic critical exponents are determined for lattice sizes in the range L=20-100 via a sophisticated two-stage numerical strategy of entropic sampling in dominant energy subspaces, using mainly the Wang-Landau algorithm. The second-order phase transition, emerging under random bonds from the second-order regime of the pure model, has the same values of critical exponents as the two-dimensional Ising universality class, with the effect of the bond disorder on the specific heat being well described by double-logarithmic corrections, our findings thus supporting the marginal irrelevance of quenched bond randomness. On the other hand, the second-order transition, emerging under bond randomness from the first-order regime of the pure model, has a distinctive universality class with nu=1.30(6) and beta/nu = 0.128(5) . These results amount to a strong violation of universality principle of critical phenomena, since these two second-order transitions, with different sets of critical exponents, are between the same ferromagnetic and paramagnetic phases. Furthermore, the latter of these two sets of results supports an extensive but weak universality, since it has the same magnetic critical exponent (but a different thermal critical exponent) as a wide variety of two-dimensional systems with and without quenched disorder. In the conversion by bond randomness of the first-order transition of the pure system to second order, we detect, by introducing and evaluating connectivity spin densities, a microsegregation that also explains the increase we find in the phase transition temperature under bond randomness.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.79.011125DOI Listing

Publication Analysis

Top Keywords

bond randomness
20
phase transition
16
pure model
12
critical exponents
12
strong violation
8
critical phenomena
8
blume-capel model
8
second-order phase
8
magnetic critical
8
transition emerging
8

Similar Publications

Accurate prediction of polymer properties using molecular dynamics (MD) simulations requires a properly relaxed starting structure. Polymer models built from scratch by specialized algorithms (self-avoiding random walk, Monte Carlo, etc.) are far from relaxed and, moreover, often possess a large number of structural defects: close contacts between atoms, wrong bond distances, voids, unfavorable molecular conformations or packing, etc.

View Article and Find Full Text PDF

Background: Increased bond strength between aged CAD/CAM (Computer-Aided Design and Computer-Aided Manufacturing) provisional restorative materials is essential for reparability. This study investigated the impact of three different solvents and airborne-particle abrasion on the shear bond strength (SBS) of aged CAD/CAM provisional restorative materials, which are milled PMMA and 3D-printed resin with flowable resin composite.

Methods: 3D-printed resin and milled PMMA (N = 160 per type) were fabricated into cylindrical shapes (5 mm in diameter, 5 mm in height), aged by 5,000 thermocycling cycles, and randomize divided at random into five groups (N = 32) based on surface modification protocols: control; non-surface modification, MEK; application with methyl ethyl ketone, THF; application with tetrahydrofuran, Alc; application with isopropyl alcohol, and APA; airborne-particle abrasion with 50-µm alumina oxide particle.

View Article and Find Full Text PDF

A Commentary On: Fehrenbach J, de Soares J L S, do Nascimento Foly J C S, Miotti L L, Münchow E A Mechanical performance of endocrown restorations in anterior teeth: A systematic review and network meta-analysis. Dent Mater 2025; https://doi.org/10.

View Article and Find Full Text PDF

For quantum phases of Hamiltonian ground states, the energy gap plays a central role in ensuring the stability of the phase as long as the gap remains finite. We propose Markov length, the length scale at which the quantum conditional mutual information (CMI) decays exponentially, as an equally essential quantity characterizing mixed-state phases and transitions. For a state evolving under a local Lindbladian, we argue that if its Markov length remains finite along the evolution, then it remains in the same phase, meaning there exists another quasilocal Lindbladian evolution that can reverse the former one.

View Article and Find Full Text PDF

Cyclic peptides are attractive for drug discovery due to their excellent binding properties and the potential to cross cell membranes. However, by far not all cyclic peptides are cell permeable, and measuring or predicting their membrane permeability is not trivial. In this work, we assessed the membrane permeability of thioether-cyclized peptides, a widely used format in drug discovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!