Molecular simulation of protein dynamics in nanopores. II. Diffusion.

J Chem Phys

Department of Physics, Sharif University of Technology, Tehran 11155-9161, IranInstitute of Physics, Carl von Ossietzky University, Oldenburg D-26111, Germany.

Published: February 2009

A novel combination of discontinuous molecular dynamics and the Langevin equation, together with an intermediate-resolution model of proteins, is used to carry out long (several microsecond) simulations in order to study transport of proteins in nanopores. We simulated single-domain proteins with the alpha-helical native structure. Both attractive and repulsive interaction potentials between the proteins and the pores' walls are considered. The diffusivity D of the proteins is computed not only under the bulk conditions but also as a function of their "length" (the number of the amino-acid groups), temperature T, pore size, and interaction potentials with the walls. Compared with the experimental data, the computed diffusivities under the bulk conditions are of the correct order of magnitude. The diffusivities both in the bulk and in the pores follow a power law in the length [script-l] of the proteins and are larger in pores with repulsive walls. D(+)/D(-), the ratio of the diffusivities in pores with attractive and repulsive walls, exhibits two local maxima in its dependence on the pore size h, which are attributed to the pore sizes and protein configurations that induce long-lasting simultaneous interactions with both walls of the pores. Far from the folding temperature T(f), D increases about linearly with T, but due to the thermal fluctuations and their effect on the proteins' structure near T(f), the dependence of D on T in this region is nonlinear. We propose a novel and general "phase diagram," consisting of four regions, that describes qualitatively the effect of h, T, and interaction potentials with the walls on the diffusivity D of a protein.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3080770DOI Listing

Publication Analysis

Top Keywords

interaction potentials
12
attractive repulsive
8
bulk conditions
8
pore size
8
potentials walls
8
diffusivities bulk
8
repulsive walls
8
proteins
6
walls
6
molecular simulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!