The localization and photosensitization of modified chlorin photosensitizers in artificial membranes.

Photochem Photobiol Sci

Department of Physics and Nano Medicine Research Center, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel.

Published: March 2009

In this work we investigate the localization and photophysical properties of twelve synthetically derived chlorins in artificial membranes, with the goal of designing more effective photosensitizers for photodynamic therapy (PDT). The studied chlorins incorporate substituents of varying lipophilicity at the C(5)-meso-position (H to C(5)H(11)), while the C(13)- and C(17)-positions have carboxylate "anchoring" groups tethered to the tetrapyrrole by alkyl chains (CH(2))(n) (n = 1-3). It was found that as n increases, the chromophoric part of the molecule, and thus the point of generation of singlet oxygen, is located at a deeper position in the bilayer. The vertical insertion of the sensitizers was assessed by two fluorescence-quenching techniques: by iodide ions that come from the aqueous phase and by spin-probe-labeled phospholipids that are incorporated into the bilayer, using the parallax method. These results demonstrate that elongation of the side chains endows the modified molecules with a larger affinity for artificial membranes and also causes the tetrapyrrole ring to be localized deeper in the lipid membrane. This location leads to a higher effective quantum yield for the chemical reaction of singlet oxygen with its chemical target 9,10-dimethylanthracene (DMA).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b814970dDOI Listing

Publication Analysis

Top Keywords

artificial membranes
12
singlet oxygen
8
localization photosensitization
4
photosensitization modified
4
modified chlorin
4
chlorin photosensitizers
4
photosensitizers artificial
4
membranes work
4
work investigate
4
investigate localization
4

Similar Publications

Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.

Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.

View Article and Find Full Text PDF

Electrophysiological Characterization of Monoolein-Fatty Acid Bilayers.

Langmuir

January 2025

Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States.

Understanding the evolution of protocells, primitive compartments that distinguish self from nonself, is crucial for exploring the origin of life. Fatty acids and monoglycerides have been proposed as key components of protocell membranes due to their ability to self-assemble into bilayers and vesicles capable of nutrient exchange. In this study, we investigate the electrophysiological properties of planar bilayers composed of monoglyceride and fatty acid mixtures, using a droplet interface bilayer system.

View Article and Find Full Text PDF

Reproducing the microstructure of the natural cornea remains a significant challenge in achieving the mechanical and biological functionality of artificial corneas. Therefore, the development of cascade structures that mimic the natural extracellular matrix (ECM), achieving both macro-stability and micro-structure, is of critical importance. This study proposes a novel, efficient, and general photo-functionalization strategy for modifying natural biomaterials.

View Article and Find Full Text PDF

Vitamin C is an antioxidant and is essential for immune function and infection resistance. Supplementation is necessary when a sufficient amount of vitamin C is not obtained through the diet. Alternative formulations of vitamin C may enhance its bioavailability and retention over traditional ascorbic acid.

View Article and Find Full Text PDF

Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!