AI Article Synopsis

  • The study focuses on bridging the gap between two scales in neuronal modeling: the microscopic scale (individual neurons) and the mesoscopic scale (populations of neurons), using stochastic differential equations.
  • A new approach is introduced that proves these equations are well-posed, providing a constructive method for computing unique solutions, with characterized complexity and convergence rates.
  • The findings enhance understanding of neural mass models like Jansen and Rit (1995), illustrating that their simplified dynamics are a coarse approximation compared to the more complex behavior revealed, supported by numerical experiments validating the proposed framework.

Article Abstract

We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649202PMC
http://dx.doi.org/10.3389/neuro.10.001.2009DOI Listing

Publication Analysis

Top Keywords

unique solution
8
equations
5
constructive mean-field
4
mean-field analysis
4
analysis multi-population
4
multi-population neural
4
neural networks
4
networks random
4
random synaptic
4
synaptic weights
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!