In C(3) plants, diffusion of CO(2) into leaves is restricted by stomata and subsequently by the intercellular airspaces and liquid phase into chloroplasts. While considerable information exists on the effect of environmental conditions on stomatal conductance (g(s)), little is known on whether the mesophyll conductance to CO(2) diffusion (g(m)) changes with respect to photon flux density (PFD) and CO(2) partial pressure (pCO(2)). In this study, the effects of PFD and/or pCO(2) on g(m) were examined in wheat leaves by combining gas exchange with carbon isotope discrimination measurements using a membrane inlet mass spectrometer. Measurements were made in 2% O(2) to reduce the fractionation associated with photorespiration. The magnitude of g(m) was estimated using the observed carbon isotope discrimination (Delta), ambient and intercellular pCO(2), CO(2) assimilation and respiration rates, either from an individual measurement made under one environmental condition or from a global fit to multiple measurements where PFD was varied. It was found that respiration made a significant and variable contribution to the observed discrimination, which associated with the difference in isotopic composition between CO(2) in the greenhouse and that used for gas exchange measurements. In wheat, g(m) was independent of PFD between 200 and 1500 micromol m(-2) s(-1) and was independent of p(i) between 80 and 500 microbar.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erp035DOI Listing

Publication Analysis

Top Keywords

mesophyll conductance
8
conductance co2
8
co2 diffusion
8
wheat leaves
8
gas exchange
8
carbon isotope
8
isotope discrimination
8
co2
6
light co2
4
co2 affect
4

Similar Publications

Key role played by mesophyll conductance in limiting carbon assimilation and transpiration of potato under soil water stress.

Front Plant Sci

December 2024

BIODYNE Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium.

Introduction: The identification of the physiological processes limiting carbon assimilation under water stress is crucial for improving model predictions and selecting drought-tolerant varieties. However, the influence of soil water availability on photosynthesis-limiting processes is still not fully understood. This study aimed to investigate the origins of photosynthesis limitations on potato () during a field drought experiment.

View Article and Find Full Text PDF

Canola ( L.) is a valuable oilseed crop worldwide. However, trait improvement by breeding has been limited by its low genetic diversity and polyploid genetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!