Composite optical microcavity of diamond nanopillar and silica microsphere.

Nano Lett

Department of Physics and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA.

Published: April 2009

A composite optical microcavity, in which nitrogen vacancy (NV) centers in a diamond nanopillar are coupled to whispering gallery modes in a silica microsphere, is demonstrated. Nanopillars with a diameter as small as 200 nm are fabricated from a bulk diamond crystal by reactive ion etching and are positioned with nanometer precision near the equator of a silica microsphere. The composite nanopillar-microsphere system overcomes the poor controllability of a nanocrystal-based microcavity system and takes full advantage of the exceptional spin properties of NV centers and the ultrahigh quality factor of silica microspheres.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl8032944DOI Listing

Publication Analysis

Top Keywords

silica microsphere
12
composite optical
8
optical microcavity
8
diamond nanopillar
8
microsphere composite
8
microcavity diamond
4
silica
4
nanopillar silica
4
microcavity nitrogen
4
nitrogen vacancy
4

Similar Publications

This work involves the preparation of dual surrogate-imprinted polymers (D-MIPs) for the capture of SARS-CoV-2. To achieve this goal, an innovative and novel dual imprinting approach using carboxylated-polystyrene (PS-COOH) nanoparticles with a diameter of 100 nm and a SARS-CoV-2 Spike-derived peptide was carried out at the surface of amine-functionalized silica (PS-NH) microspheres with a diameter of 500 nm. Firstly, PS-COOH nanoparticles with the same size and spherical shape as the SARS-CoV-2 virus were employed to form hemispherical indentations (HI) at the surface of the PS-NH microspheres (obtaining dummy particle-imprinted polymers, HI-MIPs).

View Article and Find Full Text PDF

Limited by the adsorption and diffusion rate of water molecules, traditional humidity sensors, such as those based on polymer electrolytes, porous ceramics, and metal oxides, typically have long response times, which hinder their application in monitoring transient humidity changes. Here we present an ultrafast humidity sensor with a millisecond-level response. The sensor is prepared by assembling monolayer graphene oxide quantum dots on silica microspheres using a simple electrostatic self-assembly technique.

View Article and Find Full Text PDF

Self-Healing Superhydrophobic Coatings with Multiphase Repellence Property.

ACS Appl Mater Interfaces

January 2025

Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.

Developing versatile, scalable, and durable coatings that repel various matters in different service environments is of great importance for engineered materials applications but remains highly challenging. Here, the mesoporous silica microspheres (HMS) fabricated by the hard template method were utilized as micro-nanocontainers to encapsulate the hydrophobic agent of perfluorooctyltriethoxysilane (F13) and the corrosion inhibitor of benzotriazole (BTA), forming the functional microsphere of F-HMS(BTA). Moreover, the synthesized organosilane-modified silica sol adhesive (SMP) and F-HMS(BTA) were further employed as the binder and functional filler to construct a superhydrophobic self-healing coating of SMP@F-HMS(BTA) on various engineering metals through scalable spraying.

View Article and Find Full Text PDF

This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.

View Article and Find Full Text PDF

Facile Fabrication of Monodisperse Vinyl Hybrid Core-Shell Silica Microsphere with Short Range Radial Channel in bi-phase System.

Small

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.

The development of monodisperse hybrid silica microspheres with highly regular pore structure and uniform distribution of functional groups have significant value in the biomolecular separation field. In this work, the short range ordered pore channels are precisely constructed onto the non-porous silica microsphere surface by a bi-phase assembly method, and the cylindrical silica channel introduced a plethora of vinyl groups by "one-pot" co-condensation to form vinyl hybrid silica shell. As hydrophilic interaction chromatography (HILIC) stationary phase, the vinyl hybrid core-shell silica microsphere is simply modified with zwitterion glutathione (SiO@SiO-GSH), in which the HILIC enrichment process is significantly shortened due to its specific porous characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!