The impact of feeding injury by the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), and bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on susceptible and resistant wheat, Triticum aestivum L., near-isogenic lines 'Tugela' (susceptible), Tugela-Dn1 (antibiotic), Tugela-Dn2 (tolerant), and Tugela-Dn5 (antixenotic) was evaluated by assessing photosynthetic parameters. Photosynthesis and closely related parameters, pigment composition, and nonstructural carbohydrates were measured at 1, 3, and 9 d after aphids were introduced on plants maintained under greenhouse conditions. Overall, R. padi had a higher reproductive capacity within a period of 9 d compared with D. noxia on all lines except Tugela-Dn2. Although the visible injury symptoms associated with aphid injury can be highly species specific, the data indicate that photosynthetic reduction is a common physiological pattern of wheat response to aphid feeding, irrespective of chlorosis elicitation. Although both aphids negatively affected net photosynthesis, D. noxia had a greater impact than R. padi, even when aphid numbers were considerably fewer for D. noxia (100-150 aphids per plant) compared with R. padi (> 200 aphids per plant). The photosynthetic pigment and carbohydrate data suggest that the initial net photosynthesis reduction elicited by aphid feeding may not be directly related to the light reaction portion of the photosynthetic pathway via pigment losses. It is also unlikely that source-sink manipulation is the primary cause for the observed short-term inhibition of photosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1603/029.102.0154DOI Listing

Publication Analysis

Top Keywords

hemiptera aphididae
12
diuraphis noxia
8
rhopalosiphum padi
8
padi hemiptera
8
aphid feeding
8
net photosynthesis
8
aphids plant
8
aphid
6
noxia
5
padi
5

Similar Publications

Transgenerational Plasticity of Maternal Hemolymph Trehalose in Aphids.

Arch Insect Biochem Physiol

January 2025

College of Agriculture, Ibaraki University, Inashiki, Japan.

Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood.

View Article and Find Full Text PDF

Short neuropeptide F (sNPF) is an insect-specific neuropeptide named for its C-terminal phenylalanine. It consists of 6-19 amino acids with a conserved RLRFa structure, regulating feeding, growth, circadian rhythms, and water-salt balance in insects. Its receptor belongs to GPCR-As and binds sNPF to regulate the insect nervous system.

View Article and Find Full Text PDF

Industrial hemp, Cannabis sativa L., is an herbaceous annual plant that has recently re-entered crop production both in the field and in greenhouses within the United States. Like many agronomic crops, hemp production faces several insect pest challenges.

View Article and Find Full Text PDF

Overexpression of CYP6CY1 is Involved in Imidacloprid Resistance in Sitobion miscanthi (Takahashi) (Homoptera: Aphidae).

Neotrop Entomol

January 2025

College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, China.

Sitobion miscanthi is a wheat aphid species that can damage seriously agricultural production. The effective management of wheat aphids has depended on chemical insecticides. However, their wide application led to severe resistance of wheat aphids to some insecticides, and cytochrome P450 as a detoxifying enzyme plays a crucial role in the insecticide resistance.

View Article and Find Full Text PDF

Transgenic Cotton Expressing ds Significantly Delays the Growth and Development of by Inhibiting Its Glycolysis and TCA Cycle.

Int J Mol Sci

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

In our previous research, we found that not only participates in the detoxification metabolism of neonicotinoid insecticides in cotton aphid but also affects their growth and development. However, how does transgenic cotton expressing ds affect the growth and development of cotton aphid? In this study, we combined transcriptome and metabolome to analyze how to inhibit the growth and development of cotton aphid treated with transgenic cotton expressing ds (TG cotton). The results suggested that a total of 509 differentially expressed genes (DEGs) were identified based on the DESeq method, and a total of 431 differential metabolites (DAMs) were discovered using UPLC-MS in the metabolic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!