Effects of captan on Apis mellifera brood development under field conditions in California almond orchards.

J Econ Entomol

Makhteshim Agan of North America, 4515 Falls of Neuse Rd., Raleigh, NC 27609, USA.

Published: February 2009

Three almond field trials were conducted during 2003 and 2004 at two locations in central (Fresno County) and northern (Yolo County) California to evaluate the potential effects of commercial applications of Captan on honey bees, Apis mellifera L. Captan was applied at 5.0 kg (AI)/ha during bloom. Hives were evaluated for hive health and brood development parameters for approximately 2 mo after application. This study showed that the application of Captan was not harmful to foraging honey bees or their brood. No treatment-related effects were noted on hive weights, dead bee deformity, number of dead bees, survival of individual larvae, weight of individual emerging adults, and other hive health parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1603/029.102.0104DOI Listing

Publication Analysis

Top Keywords

apis mellifera
8
brood development
8
honey bees
8
hive health
8
effects captan
4
captan apis
4
mellifera brood
4
development field
4
field conditions
4
conditions california
4

Similar Publications

Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO NPs ingestion (1.

View Article and Find Full Text PDF

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

Bumblebees, the most important wild pollinators in both agricultural and natural ecosystems, are declining worldwide. The global decline of bumblebees may threaten biodiversity, pollination services, and, ultimately, agricultural productivity. Several factors, including pesticide usage, climate change, habitat loss, and species invasion, have been documented in the decline of bumblebee species, but recent studies have revealed the dominating role of pathogens and parasites over any of these causes.

View Article and Find Full Text PDF

The bioaccumulation of pesticides in honeybee products (HBPs) should be studied for a number of reasons. The presence of pesticides in HBPs can provide new data on the risk related to the use of pesticides and their role in bee colony losses. Moreover, the degree of contamination of HBPs can lower their quality, weaken their beneficial properties, and, in consequence, may endanger human health.

View Article and Find Full Text PDF

Since the imbalance between free radicals and antioxidants in the body plays a significant role in the physiology of common, often dangerous diseases, an emphasis is placed on enriching the daily diet with compounds characterized by antioxidant activity. Good sources of natural antioxidants are bee products such as honey, bee pollen, bee bread and propolis, and the best path for introducing the latter products into the diet is mixing them with honey. However, the characteristics of bee product mixtures are not yet fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!