We screened a series of new epoxysuccinyl peptides for the development of a lysosomal cathepsin L-specific inhibitor. Among the compounds tested, (2S,3S)-oxirane-2,3-dicarboxylic acid 2-[((S)-1-benzylcarbamoyl-2-phenyl-ethyl)-amide] 3-{[2-(4-hydroxy-phenyl)-ethyl]-amide} (compound CAA0225) was the most potent inhibitor of cathepsin L. CAA0225 inhibited rat liver cathepsin L with IC50 values of 1.9 nM, but not rat liver cathepsin B (IC50, >1000-5000 nM). To assess the contribution of cathepsin L to lysosomal proteolysis, we evaluated autophagy, which is the process of lysosomal self-degradation of cell constituents. In HeLa and Huh-7 cells cultured under nutrient-deprived conditions CAA0225 significantly inhibited degradation of long-lived proteins; however, the magnitude of inhibition was comparable to that in the presence of CA-074-OMe, which is a cathepsin B-specific inhibitor. Thus the contributions of cathepsin L and cathepsin B to autophagic protein degradation of cytoplasmic proteins are nearly equal. During autophagy, microtubule-associated protein IA/IB light chain 3-II (LC3-II) and gamma-aminobutyric acid (A) receptor-associated protein (GABARAP)-II, which are specific markers of autophagosomal membranes that engulf cytoplasmic components, also undergo degradation upon fusion of autophagosomes with lysosomes. CAA0225 effectively inhibited degradation of LC3-II and GABARAP, whereas CA-074-OMe had only a marginal effect on their levels. Therefore we conclude that cathepsin L does not play a general role in the degradation of proteins in the lumen of autophagosomes, but rather is involved specifically in the degradation of autophagosomal membrane markers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.32.475 | DOI Listing |
Adv Healthc Mater
January 2025
Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
Bottlebrush polymers (BBPs) have garnered significant attention as advanced drug delivery systems, capable of transporting a diverse range of therapeutic agents, including both chemical drugs and biologics. Despite their effectiveness, the empty BBP vectors post-drug release may pose long-term safety risks due to their difficult systemic clearance. Here, a responsive degradable BBP platform for cancer therapy is developed, featuring a poly(disulfide) backbone grafted with fluorine-terminated zwitterionic side chains.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
Background: Papillary thyroid carcinoma (PTC) is the most common type of endocrine tumor, and its incidence is on the rise. Observational studies have linked cathepsins, an endolysosomal cysteine protein hydrolase, to the malignant progression of several tumors, including PTC. However, the causal relationship between cathepsins and PTC remains unclear.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China 100853. Electronic address:
This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
First Operating Room, The First Hospital of Jilin University, Changchun, China. Electronic address:
Background: Certain peripheral proteins are believed to be involved in the development of Alzheimer's disease (AD), but the roles of other new protein biomarkers are still unclear. Current treatments aim to manage symptoms, but they are not effective in stopping the progression of the disease. New drug targets are needed to prevent Alzheimer's disease.
View Article and Find Full Text PDFCell Rep
January 2025
Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!