Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In a rat model of long-lasting pressure-overload hypertrophy, we investigated whether changes in the relative expression of myocardial actin isoforms are among the early signs of ventricular mechanical dysfunction before the transition toward decompensation. Forty-four rats with infrarenal aortic banding (AC rats) were studied. Hemodynamic parameters were measured 1 mo (AC(1) group; n = 20) or 2 mo (AC(2); n = 24) after aortic ligature. Then subgroups of AC(1) and AC(2) left ventricles (LV) were used to evaluate 1) LV anatomy and fibrosis (morphometry), 2) expression levels (immunoblotting) and spatial distribution (immunohistochemistry) of alpha-skeletal actin (alpha-SKA), alpha-cardiac actin (alpha-CA), and alpha-smooth muscle actin (alpha-SMA), and 3) cell mechanics and calcium transients in enzimatically isolated myocytes. Although the two AC groups exhibited a comparable degree of hypertrophy (+30% in LV mass; +20% in myocyte surface) and a similar increase in the amount of fibrosis compared with control animals (C group; n = 22), a worsening of LV mechanical performance was observed only in AC(2) rats at both organ and cellular levels. Conversely, AC(1) rats exhibited enhanced LV contractility and preserved cellular contractile behavior associated with increased calcium transients. Alpha-SKA expression was upregulated (+60%) in AC(1). In AC(2) ventricles, prolonged hypertension also induced a significant increase in alpha-SMA expression, mainly at the level of arterial vessels. No significant differences among groups were observed in alpha-CA expression. Our findings suggest that alpha-SKA expression regulation and wall remodeling of coronary arterioles participate in the development of impaired kinetics of contraction and relaxation in prolonged hypertension before the occurrence of marked histopathologic changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01057.2008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!